pubmed-article:2016736 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:2016736 | lifeskim:mentions | umls-concept:C0242767 | lld:lifeskim |
pubmed-article:2016736 | lifeskim:mentions | umls-concept:C0040300 | lld:lifeskim |
pubmed-article:2016736 | lifeskim:mentions | umls-concept:C1186763 | lld:lifeskim |
pubmed-article:2016736 | lifeskim:mentions | umls-concept:C0016701 | lld:lifeskim |
pubmed-article:2016736 | lifeskim:mentions | umls-concept:C0162731 | lld:lifeskim |
pubmed-article:2016736 | lifeskim:mentions | umls-concept:C0936012 | lld:lifeskim |
pubmed-article:2016736 | lifeskim:mentions | umls-concept:C0262879 | lld:lifeskim |
pubmed-article:2016736 | lifeskim:mentions | umls-concept:C0178735 | lld:lifeskim |
pubmed-article:2016736 | lifeskim:mentions | umls-concept:C1548793 | lld:lifeskim |
pubmed-article:2016736 | pubmed:issue | Pt 1 | lld:pubmed |
pubmed-article:2016736 | pubmed:dateCreated | 1991-5-22 | lld:pubmed |
pubmed-article:2016736 | pubmed:abstractText | A VG Microscopes HB501 field-emission high-resolution scanning transmission electron microscope (STEM) was used to image and analyse rapidly frozen, isolated macromolecules and small organelles in tissue cryosections. Dark-field images were obtained from frozen-hydrated microtubules demonstrating that sufficient contrast is available to reveal structural information. The samples were subsequently freeze-dried in the STEM and low-dose (approximately 10(3) e/nm2) dark-field mass maps were recorded with single electron sensitivity. Elemental analysis of individual macromolecules was achievable at high dose using parallel-detection electron energy-loss spectroscopy, albeit with some structural degradation. Detection of copper (320 atoms) in di-decameric haemocyanin molecules was easily within the limits of sensitivity. Elemental analysis of hydrated cryosections is limited by radiation damage to a resolution of approximately 1 micron2. For freeze-dried sections, however, the high probe current and stable cold stage of the HB501 STEM allow energy-dispersive X-ray (EDX) microanalysis of low elemental concentrations in highly localized subcellular volumes. EDX spectra from cryosections of cerebellar cortex show that a 100-s analysis time is sufficient to quantify the calcium content of 400-nm2 regions within Purkinje cell dendrites with an uncertainty of +/- 2 mmol/kg dry weight, equivalent to +/- 12 atoms. | lld:pubmed |
pubmed-article:2016736 | pubmed:language | eng | lld:pubmed |
pubmed-article:2016736 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2016736 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:2016736 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2016736 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:2016736 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:2016736 | pubmed:month | Jan | lld:pubmed |
pubmed-article:2016736 | pubmed:issn | 0022-2720 | lld:pubmed |
pubmed-article:2016736 | pubmed:author | pubmed-author:AndrewsS BSB | lld:pubmed |
pubmed-article:2016736 | pubmed:author | pubmed-author:LeapmanR DRD | lld:pubmed |
pubmed-article:2016736 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:2016736 | pubmed:volume | 161 | lld:pubmed |
pubmed-article:2016736 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:2016736 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:2016736 | pubmed:pagination | 3-19 | lld:pubmed |
pubmed-article:2016736 | pubmed:dateRevised | 2006-8-8 | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:meshHeading | pubmed-meshheading:2016736-... | lld:pubmed |
pubmed-article:2016736 | pubmed:year | 1991 | lld:pubmed |
pubmed-article:2016736 | pubmed:articleTitle | Analysis of directly frozen macromolecules and tissues in the field-emission STEM. | lld:pubmed |
pubmed-article:2016736 | pubmed:affiliation | Biomedical Engineering and Instrumentation Program, NCRR, National Institutes of Health, Bethesda, MD 20892. | lld:pubmed |
pubmed-article:2016736 | pubmed:publicationType | Journal Article | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2016736 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:2016736 | lld:pubmed |