Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
11
pubmed:dateCreated
2008-11-7
pubmed:abstractText
Breast density is a strong risk factor for breast cancer; however, no standard assessment method exists. An automated breast density method was modified and compared with a semi-automated, user-assisted thresholding method (Cumulus method) and the Breast Imaging Reporting and Data System four-category tissue composition measure for their ability to predict future breast cancer risk. The three estimation methods were evaluated in a matched breast cancer case-control (n = 372 and n = 713, respectively) study at the Mayo Clinic using digitized film mammograms. Mammograms from the craniocaudal view of the noncancerous breast were acquired on average 7 years before diagnosis. Two controls with no previous history of breast cancer from the screening practice were matched to each case on age, number of previous screening mammograms, final screening exam date, menopausal status at this date, interval between earliest and latest available mammograms, and residence. Both Pearson linear correlation (R) and Spearman rank correlation (r) coefficients were used for comparing the three methods as appropriate. Conditional logistic regression was used to estimate the risk for breast cancer (odds ratios and 95% confidence intervals) associated with the quartiles of percent breast density (automated breast density method, Cumulus method) or Breast Imaging Reporting and Data System categories. The area under the receiver operator characteristic curve was estimated and used to compare the discriminatory capabilities of each approach. The continuous measures (automated breast density method and Cumulus method) were highly correlated with each other (R = 0.70) but less with Breast Imaging Reporting and Data System (r = 0.49 for automated breast density method and r = 0.57 for Cumulus method). Risk estimates associated with the lowest to highest quartiles of automated breast density method were greater in magnitude [odds ratios: 1.0 (reference), 2.3, 3.0, 5.2; P trend < 0.001] than the corresponding quartiles for the Cumulus method [odds ratios: 1.0 (reference), 1.7, 2.1, and 3.8; P trend < 0.001] and Breast Imaging Reporting and Data System [odds ratios: 1.0 (reference), 1.6, 1.5, 2.6; P trend < 0.001] method. However, all methods similarly discriminated between case and control status; areas under the receiver operator characteristic curve were 0.64, 0.63, and 0.61 for automated breast density method, Cumulus method, and Breast Imaging Reporting and Data System, respectively. The automated breast density method is a viable option for quantitatively assessing breast density from digitized film mammograms.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-10587206, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-10845521, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-11008909, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-11120407, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-11190946, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-12201434, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-12376506, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-12433716, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-12674236, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-12692108, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-12869401, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-15100340, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-15125150, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-15551535, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-15773786, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-15894652, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-15900041, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-15961755, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-16150987, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-16169887, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-16261410, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-16604760, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-16775176, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-16954473, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-16954474, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-17153414, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-17220330, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-17255289, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-17409321, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-17507617, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-18373863, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-18483328, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-7063747, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-7752271, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-9086005, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-9210710, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-9368106, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-9419517, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-9821201, http://linkedlifedata.com/resource/pubmed/commentcorrection/18990749-9865433
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Nov
pubmed:issn
1055-9965
pubmed:author
pubmed:issnType
Print
pubmed:volume
17
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
3090-7
pubmed:dateRevised
2011-9-26
pubmed:meshHeading
pubmed:year
2008
pubmed:articleTitle
An automated approach for estimation of breast density.
pubmed:affiliation
H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural