Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:dateCreated
2008-2-26
pubmed:abstractText
High-throughput peptide and protein identification technologies have benefited tremendously from strategies based on tandem mass spectrometry (MS/MS) in combination with database searching algorithms. A major problem with existing methods lies within the significant number of false positive and false negative annotations. So far, standard algorithms for protein identification do not use the information gained from separation processes usually involved in peptide analysis, such as retention time information, which are readily available from chromatographic separation of the sample. Identification can thus be improved by comparing measured retention times to predicted retention times. Current prediction models are derived from a set of measured test analytes but they usually require large amounts of training data.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-10612281, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-11108702, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-11928508, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-11951976, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-12433093, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-12641221, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-1438297, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-14976030, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-15080748, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-15238601, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-15359729, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-15473683, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-15511290, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-15627956, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-15858974, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-15961480, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-16083278, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-16224960, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-16837522, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-16841926, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-17049536, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-17092987, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-17105170, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-17105172, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-17237091, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-17473315, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-3235635, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-6929513, http://linkedlifedata.com/resource/pubmed/commentcorrection/18053132-9204580
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:issn
1471-2105
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
8
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
468
pubmed:dateRevised
2010-9-16
pubmed:meshHeading
pubmed:year
2007
pubmed:articleTitle
Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics.
pubmed:affiliation
Division for Simulation of Biological Systems, Center for Bioinformatics, Eberhard-Karls University, 72076 Tübingen, Germany. npfeifer@informatik.uni-tuebingen.de
pubmed:publicationType
Journal Article, Comparative Study