Source:http://linkedlifedata.com/resource/pubmed/id/15172803
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
1
|
pubmed:dateCreated |
2004-6-2
|
pubmed:abstractText |
We consider a stochastic SIS infection model for a population partitioned into m households assuming random mixing. We solve the model in the limit m --> infinity by using the self-consistent field method of statistical physics. We derive a number of explicit results, and give numerical illustrations. We then do numerical simulations of the model for finite m and without random mixing. We find in many of these cases that the self-consistent field method is a very good approximation.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:month |
Jul
|
pubmed:issn |
0025-5564
|
pubmed:author | |
pubmed:copyrightInfo |
Copyright 2004 Elsevier Inc.
|
pubmed:issnType |
Print
|
pubmed:volume |
190
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
71-85
|
pubmed:dateRevised |
2009-11-11
|
pubmed:meshHeading |
pubmed-meshheading:15172803-Endemic Diseases,
pubmed-meshheading:15172803-Family Characteristics,
pubmed-meshheading:15172803-Humans,
pubmed-meshheading:15172803-Models, Biological,
pubmed-meshheading:15172803-Numerical Analysis, Computer-Assisted,
pubmed-meshheading:15172803-Population,
pubmed-meshheading:15172803-Probability,
pubmed-meshheading:15172803-Stochastic Processes
|
pubmed:year |
2004
|
pubmed:articleTitle |
SIS epidemics with household structure: the self-consistent field method.
|
pubmed:affiliation |
Michigan Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120, USA.
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|