Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
9
pubmed:dateCreated
2003-12-19
pubmed:abstractText
The need for anatomical coverage and multi-spectral information must be balanced against examination and processing time to ensure high-quality, feasible imaging protocols for clinical research of cerebral development in normal-appearing brains. The focus of this study was to create and assess models to estimate total cerebral volumes of gray matter, white matter, and cerebrospinal fluid (CSF) from anatomically defined sub-samples of full clinical examinations. Pediatric patients (18F, 11M; aged 1.7 to 18.7, median 5.2 years) underwent a clinical imaging protocol consisting of 3 mm contiguous T1-, T2-, PD-, and FLAIR-weighted images after obtaining informed consent. Magnetic resonance imaging (MRI) sets were registered, RF-corrected, and then analyzed with a hybrid neural network segmentation and classification algorithm to identify normal brain parenchyma. The correlation between the image subsets and the total cerebral volumes of gray matter, white matter and CSF were examined through linear regression analyses. Five sub-sampled sets were defined and assessed in each patient to produce estimation models which were all significantly correlated (p < 0.001) with the total cerebral volumes of gray matter, white matter, and CSF. Volumes were estimated from as little as a single representative slice requiring minimal processing time, 27 min, but with an average estimation error of approximately 6%. Larger sub-samples of approximately three-quarters of the full cerebral volume required much more processing time, 2 h and 4 min, but produced estimates with an average error less than 2%. This study demonstrated that investigators can choose the amount of cerebrum sampled to optimize the acquisition and processing time against the degree of accuracy needed in the total cerebral volume estimates.
pubmed:grant
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Nov
pubmed:issn
0730-725X
pubmed:author
pubmed:issnType
Print
pubmed:volume
21
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
977-82
pubmed:dateRevised
2008-11-20
pubmed:meshHeading
pubmed:year
2003
pubmed:articleTitle
Prediction of total cerebral tissue volumes in normal appearing brain from sub-sampled segmentation volumes.
pubmed:affiliation
Department of Diagnostic Imaging, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA. john.glass@stjude.org
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, P.H.S., Research Support, Non-U.S. Gov't