Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
7
pubmed:dateCreated
1999-5-12
pubmed:abstractText
We have developed a combinatorial approach, using incremental truncation libraries of overlapping N- and C-terminal gene fragments, that examines all possible bisection points within a given region of an enzyme that will allow the conversion of a monomeric enzyme into its functional heterodimer. This general method for enzyme bisection will have broad applications in the engineering of new catalytic functions through domain swapping and chemical synthesis of modified peptide fragments and in the study of enzyme evolution and protein folding. We have tested this methodology on Escherichia coli glycinamide ribonucleotide formyltransferase (PurN) and, by genetic selection, identified PurN heterodimers capable of glycinamide ribonucleotide transformylation. Two were chosen for physical characterization and were found to be comparable to the wild-type PurN monomer in terms of stability to denaturation, activity, and binding of substrate and cofactor. Sequence analysis of 18 randomly chosen, active PurN heterodimers revealed that the breakpoints primarily clustered in loops near the surface of the enzyme, that the breaks could result in the deletion of highly conserved residues and, most surprisingly, that the active site could be bisected.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-1438192, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-1522592, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-1542687, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-1624424, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-1631098, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-1736361, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-3301838, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-3323819, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-5339877, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-5769175, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-6235151, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-7578109, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-7727434, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-7776369, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-7937952, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-8117714, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-8226647, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-8501063, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-8508951, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-8688421, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-8876180, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-9037007, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-9051735, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-9237989, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-9367764, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-9418307, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-9440693, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-9576956, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-9628739, http://linkedlifedata.com/resource/pubmed/commentcorrection/10097076-9770453
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Mar
pubmed:issn
0027-8424
pubmed:author
pubmed:issnType
Print
pubmed:day
30
pubmed:volume
96
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
3562-7
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed-meshheading:10097076-Amino Acid Sequence, pubmed-meshheading:10097076-Base Sequence, pubmed-meshheading:10097076-Computer Graphics, pubmed-meshheading:10097076-Dimerization, pubmed-meshheading:10097076-Escherichia coli, pubmed-meshheading:10097076-Genes, Bacterial, pubmed-meshheading:10097076-Genetic Vectors, pubmed-meshheading:10097076-Hydroxymethyl and Formyl Transferases, pubmed-meshheading:10097076-Kinetics, pubmed-meshheading:10097076-Models, Molecular, pubmed-meshheading:10097076-Molecular Sequence Data, pubmed-meshheading:10097076-Peptide Fragments, pubmed-meshheading:10097076-Peptide Library, pubmed-meshheading:10097076-Phosphoribosylglycinamide Formyltransferase, pubmed-meshheading:10097076-Protein Engineering, pubmed-meshheading:10097076-Protein Folding, pubmed-meshheading:10097076-Protein Structure, Secondary, pubmed-meshheading:10097076-Restriction Mapping
pubmed:year
1999
pubmed:articleTitle
Combinatorial protein engineering by incremental truncation.
pubmed:affiliation
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802-6300, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, P.H.S.