Nature

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.

Source:http://purl.uniprot.org/citations/17994087

Statements in which the resource exists as a subject.
PredicateObject
rdf:type
rdfs:comment
Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
skos:exactMatch
uniprot:name
Nature
uniprot:author
Gelbart W., Caggese C., Kaufman T.C., Langley C.H., Brown A., Strausberg R.L., Reyes R., Markow T.A., Edwards K., Kumar S., Anderson W.W., Johnson J., Liu J., Venter J.C., Hillier L., Shi L., Wang J., Luo M., Liu X., O'Grady P., Nguyen T., Russo S., Aquadro C.F., Ferguson D., Stone C., Lu J., Zhang Y., Eickbush T., Wilson D., Tao W., Franke A., Lara M., Sato H., Stephan W., Aguade M., Barsanti P., Yoshida K., Lee S.J., Liu S., Wilson A., Schaeffer S.W., Shih D., Zhang P., Matsuda M., Nguyen N., Smith C.D., Yamamoto D., Hultmark D., Tomimura Y., Tobari Y.N., Wilkinson J., Kristiansen K., Wu G., Wilson R.K., Wu C.I., Wolfner M.F., Spieth J., Segarra C., Iyer V.N., Comeron J.M., Singh R.S., Yu Q., Clark A.G., Calvi B.R., Li R., Kirkness E.F., Oliver B., Schwartz R., Zimmer A., Gibson G., Mount S.M., Smith D.R., Bloom T., Anderson E., Robin C., Wing R.A., Coyne J.A., Hall J., Rasmussen M.D., Rozas J., Karpen G.H., Fulton R., Powell J.R., Villasante A., Papaceit M., Celniker S.E., Wong A., Anderson S., Smith T.F., Akashi H., Batterham P., Barker D., Brown R.H., Butler J., Gilbert D., Alexander A.
More...