Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
19
pubmed:dateCreated
1995-10-23
pubmed:abstractText
We present a method for predicting protein folding class based on global protein chain description and a voting process. Selection of the best descriptors was achieved by a computer-simulated neural network trained on a data base consisting of 83 folding classes. Protein-chain descriptors include overall composition, transition, and distribution of amino acid attributes, such as relative hydrophobicity, predicted secondary structure, and predicted solvent exposure. Cross-validation testing was performed on 15 of the largest classes. The test shows that proteins were assigned to the correct class (correct positive prediction) with an average accuracy of 71.7%, whereas the inverse prediction of proteins as not belonging to a particular class (correct negative prediction) was 90-95% accurate. When tested on 254 structures used in this study, the top two predictions contained the correct class in 91% of the cases.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-1304347, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-1594567, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-1602478, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-1608464, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-1633801, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-2197975, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-2217139, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-2370661, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-2911565, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-3172241, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-3332386, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-3768479, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-3778917, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-3957893, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-7020376, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-8111135, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-8333967, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-8345525, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-8358300, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-8415576, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-8489703, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-8497486, http://linkedlifedata.com/resource/pubmed/commentcorrection/7568000-934293
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Sep
pubmed:issn
0027-8424
pubmed:author
pubmed:issnType
Print
pubmed:day
12
pubmed:volume
92
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
8700-4
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
1995
pubmed:articleTitle
Prediction of protein folding class using global description of amino acid sequence.
pubmed:affiliation
Department of Chemistry, University of California, Berkeley 94720, USA.
pubmed:publicationType
Journal Article, Comparative Study, Research Support, U.S. Gov't, Non-P.H.S.