Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:7187050rdf:typepubmed:Citationlld:pubmed
pubmed-article:7187050lifeskim:mentionsumls-concept:C0013227lld:lifeskim
pubmed-article:7187050lifeskim:mentionsumls-concept:C0205208lld:lifeskim
pubmed-article:7187050lifeskim:mentionsumls-concept:C1749467lld:lifeskim
pubmed-article:7187050lifeskim:mentionsumls-concept:C0025270lld:lifeskim
pubmed-article:7187050lifeskim:mentionsumls-concept:C0022702lld:lifeskim
pubmed-article:7187050lifeskim:mentionsumls-concept:C0376315lld:lifeskim
pubmed-article:7187050lifeskim:mentionsumls-concept:C0205390lld:lifeskim
pubmed-article:7187050lifeskim:mentionsumls-concept:C0441712lld:lifeskim
pubmed-article:7187050pubmed:issue5-6lld:pubmed
pubmed-article:7187050pubmed:dateCreated1983-12-20lld:pubmed
pubmed-article:7187050pubmed:abstractTextKinetics of thermal decomposition of trihydrate of sodium salt of 1,2,3,4-tetrahydro-2-methyl-1,4-dioxo-2-naphthalenesulfonic acid (MDS, vitamin K3 soluble form) in solid state by accelerated aging method at elevated temperature has been studied. It was found that the process occurs according to Prout-Tompkins model and its rate depends on temperature, humidity and particle size of the substance. Thermodynamic parameters of the reaction (Q10(0), EA, delta H not equal to, delta S not equal to, delta G) were determined and theoretically predicted stability of MDS at room temperature is given. The reaction mechanism assumes a preliminary dehydration occurring via the successive elimination of one and a half, two and a half and finally three molecules of water. The obtained anhydrous form decomposes thermally forming free radical intermediates and yielding finally 2-methyl-1,4-naphthoquinone (vitamin K3), SO2 and NaOH.lld:pubmed
pubmed-article:7187050pubmed:languageenglld:pubmed
pubmed-article:7187050pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7187050pubmed:citationSubsetIMlld:pubmed
pubmed-article:7187050pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7187050pubmed:statusMEDLINElld:pubmed
pubmed-article:7187050pubmed:issn0301-0244lld:pubmed
pubmed-article:7187050pubmed:authorpubmed-author:MarciniecBBlld:pubmed
pubmed-article:7187050pubmed:authorpubmed-author:Pawe?czykEElld:pubmed
pubmed-article:7187050pubmed:issnTypePrintlld:pubmed
pubmed-article:7187050pubmed:volume34lld:pubmed
pubmed-article:7187050pubmed:ownerNLMlld:pubmed
pubmed-article:7187050pubmed:authorsCompleteYlld:pubmed
pubmed-article:7187050pubmed:pagination399-408lld:pubmed
pubmed-article:7187050pubmed:dateRevised2008-11-21lld:pubmed
pubmed-article:7187050pubmed:meshHeadingpubmed-meshheading:7187050-...lld:pubmed
pubmed-article:7187050pubmed:meshHeadingpubmed-meshheading:7187050-...lld:pubmed
pubmed-article:7187050pubmed:meshHeadingpubmed-meshheading:7187050-...lld:pubmed
pubmed-article:7187050pubmed:meshHeadingpubmed-meshheading:7187050-...lld:pubmed
pubmed-article:7187050pubmed:meshHeadingpubmed-meshheading:7187050-...lld:pubmed
pubmed-article:7187050pubmed:meshHeadingpubmed-meshheading:7187050-...lld:pubmed
pubmed-article:7187050pubmed:meshHeadingpubmed-meshheading:7187050-...lld:pubmed
pubmed-article:7187050pubmed:articleTitleKinetics of drug decomposition. Part 73. Kinetics and mechanism of vitamin K3 soluble form thermal decomposition in solid phase.lld:pubmed
pubmed-article:7187050pubmed:publicationTypeJournal Articlelld:pubmed