Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:681924rdf:typepubmed:Citationlld:pubmed
pubmed-article:681924lifeskim:mentionsumls-concept:C0004461lld:lifeskim
pubmed-article:681924lifeskim:mentionsumls-concept:C0020672lld:lifeskim
pubmed-article:681924lifeskim:mentionsumls-concept:C0026046lld:lifeskim
pubmed-article:681924lifeskim:mentionsumls-concept:C0178587lld:lifeskim
pubmed-article:681924lifeskim:mentionsumls-concept:C0005597lld:lifeskim
pubmed-article:681924lifeskim:mentionsumls-concept:C0547047lld:lifeskim
pubmed-article:681924pubmed:issue4lld:pubmed
pubmed-article:681924pubmed:dateCreated1978-10-27lld:pubmed
pubmed-article:681924pubmed:abstractTextThe density of microtubules, T.D. (number of tubules/unit area) is highest in small crab nerve axons. After cooling of the nerve at 0 degrees C, the tubule density tends to zero (T.D. 2% of the normothermic value). Once the cooled nerves are returned in normothermia, the reconstitution of the microtubules is evidenced (T.D. = 90% of the initial normothermic value). Therefore cooling "depolymerizes" the tubules, whereas rewarming leads to their "repolymerization." These results definitely improve the interpretation of the birefringence decrease by cooling: as tubules and filaments contribute to the positive fraction of the total positive birefringence, their depolymerization by cooling explains to a large extent the decrease in total birefringence.lld:pubmed
pubmed-article:681924pubmed:languageenglld:pubmed
pubmed-article:681924pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:681924pubmed:citationSubsetIMlld:pubmed
pubmed-article:681924pubmed:statusMEDLINElld:pubmed
pubmed-article:681924pubmed:monthJullld:pubmed
pubmed-article:681924pubmed:issn0022-3034lld:pubmed
pubmed-article:681924pubmed:authorpubmed-author:ChalazonitisN...lld:pubmed
pubmed-article:681924pubmed:authorpubmed-author:AndreDDlld:pubmed
pubmed-article:681924pubmed:authorpubmed-author:Rome-TalbotDDlld:pubmed
pubmed-article:681924pubmed:issnTypePrintlld:pubmed
pubmed-article:681924pubmed:volume9lld:pubmed
pubmed-article:681924pubmed:ownerNLMlld:pubmed
pubmed-article:681924pubmed:authorsCompleteYlld:pubmed
pubmed-article:681924pubmed:pagination247-54lld:pubmed
pubmed-article:681924pubmed:dateRevised2008-11-21lld:pubmed
pubmed-article:681924pubmed:meshHeadingpubmed-meshheading:681924-A...lld:pubmed
pubmed-article:681924pubmed:meshHeadingpubmed-meshheading:681924-C...lld:pubmed
pubmed-article:681924pubmed:meshHeadingpubmed-meshheading:681924-B...lld:pubmed
pubmed-article:681924pubmed:meshHeadingpubmed-meshheading:681924-B...lld:pubmed
pubmed-article:681924pubmed:meshHeadingpubmed-meshheading:681924-A...lld:pubmed
pubmed-article:681924pubmed:meshHeadingpubmed-meshheading:681924-M...lld:pubmed
pubmed-article:681924pubmed:year1978lld:pubmed
pubmed-article:681924pubmed:articleTitleHypothermic decrease in microtubule density and birefringence in unimyelinated axons.lld:pubmed
pubmed-article:681924pubmed:publicationTypeJournal Articlelld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:681924lld:pubmed