Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
21
|
pubmed:dateCreated |
1985-10-30
|
pubmed:abstractText |
Two-dimensional crystalline arrays of Ca2+-ATPase molecules develop in sarcoplasmic reticulum vesicles exposed to Ca2+ or lanthanide ions. The Ca2+- or lanthanide-induced crystals are presumed to represent the E1 conformation of the Ca2+-ATPase, and their crystal form is clearly different from the earlier described E2 crystals induced by Na3VO4 in the presence of ethylene glycol bis(beta aminoethyl ether)-N,N,N',N'-tetraacetic acid (Taylor, K. A., Dux, L., and Martonosi, A. (1984) J. Mol. Biol. 174, 193-204). Analysis of the crystalline arrays by negative staining or freeze-fracture electron microscopy reveals obliquely oriented rows of particles corresponding to individual Ca2+-ATPase molecules. Computer analysis of the negatively stained lanthanide-induced crystalline Ca2+-ATPase arrays shows that the molecules are arranged in a P1 lattice. The pear-shaped profiles of Ca2+-ATPase molecules seen in projection in the density maps are similar to those seen in vanadate-induced crystals. The space group and unit cell dimensions of the E1 crystals are consistent with Ca2+-ATPase monomers as structural units, while the vanadate-induced E2 crystals form by lateral aggregation of chains of Ca2+-ATPase dimers. The transition between the E1 and E2 conformations may involve a shift in the monomer-oligomer equilibrium of the Ca2+-ATPase. The formation of E1 crystals by PrCl3 is promoted by inside negative membrane potential, presumably through stabilization of the E1 conformation of the enzyme. Cleavage of the Ca2+-ATPase by trypsin into two major fragments (A and B) did not interfere with the Ca2+- or the Pr3+-induced crystallization.
|
pubmed:grant | |
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:chemical |
http://linkedlifedata.com/resource/pubmed/chemical/Adenosine Triphosphate,
http://linkedlifedata.com/resource/pubmed/chemical/Calcium,
http://linkedlifedata.com/resource/pubmed/chemical/Calcium-Transporting ATPases,
http://linkedlifedata.com/resource/pubmed/chemical/Chromium,
http://linkedlifedata.com/resource/pubmed/chemical/Magnesium,
http://linkedlifedata.com/resource/pubmed/chemical/Metals, Rare Earth,
http://linkedlifedata.com/resource/pubmed/chemical/Potassium Chloride,
http://linkedlifedata.com/resource/pubmed/chemical/Trypsin
|
pubmed:status |
MEDLINE
|
pubmed:month |
Sep
|
pubmed:issn |
0021-9258
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:day |
25
|
pubmed:volume |
260
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
11730-43
|
pubmed:dateRevised |
2010-11-18
|
pubmed:meshHeading |
pubmed-meshheading:2931429-Adenosine Triphosphate,
pubmed-meshheading:2931429-Animals,
pubmed-meshheading:2931429-Calcium,
pubmed-meshheading:2931429-Calcium-Transporting ATPases,
pubmed-meshheading:2931429-Chromium,
pubmed-meshheading:2931429-Crystallization,
pubmed-meshheading:2931429-Dose-Response Relationship, Drug,
pubmed-meshheading:2931429-Freeze Fracturing,
pubmed-meshheading:2931429-Hydrogen-Ion Concentration,
pubmed-meshheading:2931429-Magnesium,
pubmed-meshheading:2931429-Membrane Potentials,
pubmed-meshheading:2931429-Metals, Rare Earth,
pubmed-meshheading:2931429-Microscopy, Electron,
pubmed-meshheading:2931429-Potassium Chloride,
pubmed-meshheading:2931429-Protein Conformation,
pubmed-meshheading:2931429-Rabbits,
pubmed-meshheading:2931429-Sarcoplasmic Reticulum,
pubmed-meshheading:2931429-Temperature,
pubmed-meshheading:2931429-Trypsin
|
pubmed:year |
1985
|
pubmed:articleTitle |
Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions.
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, P.H.S.,
Research Support, U.S. Gov't, Non-P.H.S.,
Research Support, Non-U.S. Gov't
|