Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:21170468rdf:typepubmed:Citationlld:pubmed
pubmed-article:21170468lifeskim:mentionsumls-concept:C0086388lld:lifeskim
pubmed-article:21170468lifeskim:mentionsumls-concept:C0026175lld:lifeskim
pubmed-article:21170468lifeskim:mentionsumls-concept:C0020205lld:lifeskim
pubmed-article:21170468lifeskim:mentionsumls-concept:C0442043lld:lifeskim
pubmed-article:21170468lifeskim:mentionsumls-concept:C0441471lld:lifeskim
pubmed-article:21170468lifeskim:mentionsumls-concept:C1511726lld:lifeskim
pubmed-article:21170468lifeskim:mentionsumls-concept:C0004083lld:lifeskim
pubmed-article:21170468lifeskim:mentionsumls-concept:C0870077lld:lifeskim
pubmed-article:21170468pubmed:issue2lld:pubmed
pubmed-article:21170468pubmed:dateCreated2011-3-18lld:pubmed
pubmed-article:21170468pubmed:abstractTextThe analysis of administrative health care data can be helpful to conveniently assess health care activities. In this context temporal data mining techniques can be suitably exploited to get a deeper insight into the processes underlying health care delivery. In this paper we present an algorithm for the extraction of temporal association rules (TARs) on sequences of hybrid events and its application on health care administrative databases.lld:pubmed
pubmed-article:21170468pubmed:languageenglld:pubmed
pubmed-article:21170468pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:21170468pubmed:citationSubsetIMlld:pubmed
pubmed-article:21170468pubmed:statusMEDLINElld:pubmed
pubmed-article:21170468pubmed:issn0026-1270lld:pubmed
pubmed-article:21170468pubmed:authorpubmed-author:SacchiLLlld:pubmed
pubmed-article:21170468pubmed:authorpubmed-author:CerraCClld:pubmed
pubmed-article:21170468pubmed:authorpubmed-author:FratinoPPlld:pubmed
pubmed-article:21170468pubmed:authorpubmed-author:BellazziRRlld:pubmed
pubmed-article:21170468pubmed:authorpubmed-author:ConcaroSSlld:pubmed
pubmed-article:21170468pubmed:issnTypePrintlld:pubmed
pubmed-article:21170468pubmed:volume50lld:pubmed
pubmed-article:21170468pubmed:ownerNLMlld:pubmed
pubmed-article:21170468pubmed:authorsCompleteYlld:pubmed
pubmed-article:21170468pubmed:pagination166-79lld:pubmed
pubmed-article:21170468pubmed:meshHeadingpubmed-meshheading:21170468...lld:pubmed
pubmed-article:21170468pubmed:meshHeadingpubmed-meshheading:21170468...lld:pubmed
pubmed-article:21170468pubmed:meshHeadingpubmed-meshheading:21170468...lld:pubmed
pubmed-article:21170468pubmed:meshHeadingpubmed-meshheading:21170468...lld:pubmed
pubmed-article:21170468pubmed:meshHeadingpubmed-meshheading:21170468...lld:pubmed
pubmed-article:21170468pubmed:meshHeadingpubmed-meshheading:21170468...lld:pubmed
pubmed-article:21170468pubmed:meshHeadingpubmed-meshheading:21170468...lld:pubmed
pubmed-article:21170468pubmed:year2011lld:pubmed
pubmed-article:21170468pubmed:articleTitleMining health care administrative data with temporal association rules on hybrid events.lld:pubmed
pubmed-article:21170468pubmed:affiliationDipartimento di Informatica e Sistemistica, Università di Pavia, Pavia, Italy.lld:pubmed
pubmed-article:21170468pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:21170468pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed