Source:http://linkedlifedata.com/resource/pubmed/id/21170468
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
2
|
pubmed:dateCreated |
2011-3-18
|
pubmed:abstractText |
The analysis of administrative health care data can be helpful to conveniently assess health care activities. In this context temporal data mining techniques can be suitably exploited to get a deeper insight into the processes underlying health care delivery. In this paper we present an algorithm for the extraction of temporal association rules (TARs) on sequences of hybrid events and its application on health care administrative databases.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:issn |
0026-1270
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
50
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
166-79
|
pubmed:meshHeading |
pubmed-meshheading:21170468-Algorithms,
pubmed-meshheading:21170468-Computational Biology,
pubmed-meshheading:21170468-Data Mining,
pubmed-meshheading:21170468-Delivery of Health Care,
pubmed-meshheading:21170468-Diabetes Mellitus, Type 1,
pubmed-meshheading:21170468-Diabetes Mellitus, Type 2,
pubmed-meshheading:21170468-Humans
|
pubmed:year |
2011
|
pubmed:articleTitle |
Mining health care administrative data with temporal association rules on hybrid events.
|
pubmed:affiliation |
Dipartimento di Informatica e Sistemistica, Università di Pavia, Pavia, Italy.
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|