Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
5
pubmed:dateCreated
2010-7-1
pubmed:abstractText
Multivariate phenotypes are frequently encountered in genome-wide association studies (GWAS). Such phenotypes contain more information than univariate phenotypes, but how to best exploit the information to increase the chance of detecting genetic variant of pleiotropic effect is not always clear. Moreover, when multivariate phenotypes contain a mixture of quantitative and qualitative measures, limited methods are applicable. In this paper, we first evaluated the approach originally proposed by O'Brien and by Wei and Johnson that combines the univariate test statistics and then we proposed two extensions to that approach. The original and proposed approaches are applicable to a multivariate phenotype containing any type of components including continuous, categorical and survival phenotypes, and applicable to samples consisting of families or unrelated samples. Simulation results suggested that all methods had valid type I error rates. Our extensions had a better power than O'Brien's method with heterogeneous means among univariate test statistics, but were less powerful than O'Brien's with homogeneous means among individual test statistics. All approaches have shown considerable increase in power compared to testing each component of a multivariate phenotype individually in some cases. We apply all the methods to GWAS of serum uric acid levels and gout with 550,000 single nucleotide polymorphisms in the Framingham Heart Study.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-10570044, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-10657556, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-11315092, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-11793695, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-1208363, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-12151853, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-12925518, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-14025561, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-14208728, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-15018833, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-16080802, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-16204163, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-16253630, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-16646795, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-17372189, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-17922480, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-17943122, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-17997608, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-18163497, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-18179892, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-18451988, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-18678614, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-18834626, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-18924135, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-18946066, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-19059705, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-19503597, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-19506252, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-6534410, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-7168798, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-8801636, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-9147588, http://linkedlifedata.com/resource/pubmed/commentcorrection/20583287-9545414
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
1098-2272
pubmed:author
pubmed:copyrightInfo
(c) 2010 Wiley-Liss, Inc.
pubmed:issnType
Electronic
pubmed:volume
34
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
444-54
pubmed:dateRevised
2011-7-28
pubmed:meshHeading
pubmed:year
2010
pubmed:articleTitle
Analyze multivariate phenotypes in genetic association studies by combining univariate association tests.
pubmed:affiliation
Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. qyang@bu.edu
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural