Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
3
pubmed:dateCreated
2010-5-11
pubmed:abstractText
The purpose of this study is to develop and analyze an open-source artificial intelligence program built on artificial neural networks that can participate in and support the decision making of nuclear medicine physicians in detecting coronary artery disease from myocardial perfusion SPECT (MPS).
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jun
pubmed:issn
1532-6551
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
17
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
405-13
pubmed:meshHeading
pubmed-meshheading:20204564-Artificial Intelligence, pubmed-meshheading:20204564-Coronary Angiography, pubmed-meshheading:20204564-Coronary Artery Disease, pubmed-meshheading:20204564-Exercise Test, pubmed-meshheading:20204564-Female, pubmed-meshheading:20204564-Humans, pubmed-meshheading:20204564-Image Processing, Computer-Assisted, pubmed-meshheading:20204564-Male, pubmed-meshheading:20204564-Middle Aged, pubmed-meshheading:20204564-Myocardial Perfusion Imaging, pubmed-meshheading:20204564-Neural Networks (Computer), pubmed-meshheading:20204564-Radiopharmaceuticals, pubmed-meshheading:20204564-Sensitivity and Specificity, pubmed-meshheading:20204564-Technetium Tc 99m Sestamibi, pubmed-meshheading:20204564-Thallium Radioisotopes, pubmed-meshheading:20204564-Tomography, Emission-Computed, Single-Photon
pubmed:year
2010
pubmed:articleTitle
An open-source framework of neural networks for diagnosis of coronary artery disease from myocardial perfusion SPECT.
pubmed:affiliation
Department of Nuclear Medicine, Gazi University School of Medicine, Besevler, Ankara, Turkey. leventguner@yahoo.com
pubmed:publicationType
Journal Article