pubmed-article:20203671 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:20203671 | lifeskim:mentions | umls-concept:C0085155 | lld:lifeskim |
pubmed-article:20203671 | lifeskim:mentions | umls-concept:C0282592 | lld:lifeskim |
pubmed-article:20203671 | lifeskim:mentions | umls-concept:C1546805 | lld:lifeskim |
pubmed-article:20203671 | lifeskim:mentions | umls-concept:C0449445 | lld:lifeskim |
pubmed-article:20203671 | pubmed:issue | 3 | lld:pubmed |
pubmed-article:20203671 | pubmed:dateCreated | 2010-3-5 | lld:pubmed |
pubmed-article:20203671 | pubmed:abstractText | G protein-coupled receptors (GPCRs) and their downstream signaling cascades contribute to most physiological processes and a variety of human diseases. Isolating the effects of GPCR activation in an in vivo experimental setting is challenging as exogenous ligands have off-target effects and endogenous ligands constantly modulate the activity of native receptors. Highly specific designer drug-designer receptor complexes are a valuable tool for elucidating the effects of activating particular receptors and signaling pathways within selected cell types in vivo. In this study, we describe a generic protocol for the directed molecular evolution of designer receptors exclusively activated by designer drugs (DREADDs). First, the yeast system is validated with the template receptor. Second, a mutant library is generated by error-prone PCR. Third, the library is screened by drug-dependent yeast growth assays. Mutants exhibiting the desired properties are selected for further rounds of mutagenesis or for characterization in mammalian systems. In total, these steps should take 6-8 weeks of experimentation and should result in the evolution of a receptor to be activated by the chosen ligand. This protocol should help improve the experimental targeting of select cell populations. | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:language | eng | lld:pubmed |
pubmed-article:20203671 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:20203671 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:20203671 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:20203671 | pubmed:issn | 1750-2799 | lld:pubmed |
pubmed-article:20203671 | pubmed:author | pubmed-author:RothBryan LBL | lld:pubmed |
pubmed-article:20203671 | pubmed:author | pubmed-author:DongShuyunS | lld:pubmed |
pubmed-article:20203671 | pubmed:author | pubmed-author:RoganSarah... | lld:pubmed |
pubmed-article:20203671 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:20203671 | pubmed:volume | 5 | lld:pubmed |
pubmed-article:20203671 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:20203671 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:20203671 | pubmed:pagination | 561-73 | lld:pubmed |
pubmed-article:20203671 | pubmed:dateRevised | 2011-2-14 | lld:pubmed |
pubmed-article:20203671 | pubmed:meshHeading | pubmed-meshheading:20203671... | lld:pubmed |
pubmed-article:20203671 | pubmed:meshHeading | pubmed-meshheading:20203671... | lld:pubmed |
pubmed-article:20203671 | pubmed:meshHeading | pubmed-meshheading:20203671... | lld:pubmed |
pubmed-article:20203671 | pubmed:meshHeading | pubmed-meshheading:20203671... | lld:pubmed |
pubmed-article:20203671 | pubmed:meshHeading | pubmed-meshheading:20203671... | lld:pubmed |
pubmed-article:20203671 | pubmed:meshHeading | pubmed-meshheading:20203671... | lld:pubmed |
pubmed-article:20203671 | pubmed:meshHeading | pubmed-meshheading:20203671... | lld:pubmed |
pubmed-article:20203671 | pubmed:meshHeading | pubmed-meshheading:20203671... | lld:pubmed |
pubmed-article:20203671 | pubmed:meshHeading | pubmed-meshheading:20203671... | lld:pubmed |
pubmed-article:20203671 | pubmed:meshHeading | pubmed-meshheading:20203671... | lld:pubmed |
pubmed-article:20203671 | pubmed:year | 2010 | lld:pubmed |
pubmed-article:20203671 | pubmed:articleTitle | Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. | lld:pubmed |
pubmed-article:20203671 | pubmed:affiliation | Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA. | lld:pubmed |
pubmed-article:20203671 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:20203671 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:20203671 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |