Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20203671rdf:typepubmed:Citationlld:pubmed
pubmed-article:20203671lifeskim:mentionsumls-concept:C0085155lld:lifeskim
pubmed-article:20203671lifeskim:mentionsumls-concept:C0282592lld:lifeskim
pubmed-article:20203671lifeskim:mentionsumls-concept:C1546805lld:lifeskim
pubmed-article:20203671lifeskim:mentionsumls-concept:C0449445lld:lifeskim
pubmed-article:20203671pubmed:issue3lld:pubmed
pubmed-article:20203671pubmed:dateCreated2010-3-5lld:pubmed
pubmed-article:20203671pubmed:abstractTextG protein-coupled receptors (GPCRs) and their downstream signaling cascades contribute to most physiological processes and a variety of human diseases. Isolating the effects of GPCR activation in an in vivo experimental setting is challenging as exogenous ligands have off-target effects and endogenous ligands constantly modulate the activity of native receptors. Highly specific designer drug-designer receptor complexes are a valuable tool for elucidating the effects of activating particular receptors and signaling pathways within selected cell types in vivo. In this study, we describe a generic protocol for the directed molecular evolution of designer receptors exclusively activated by designer drugs (DREADDs). First, the yeast system is validated with the template receptor. Second, a mutant library is generated by error-prone PCR. Third, the library is screened by drug-dependent yeast growth assays. Mutants exhibiting the desired properties are selected for further rounds of mutagenesis or for characterization in mammalian systems. In total, these steps should take 6-8 weeks of experimentation and should result in the evolution of a receptor to be activated by the chosen ligand. This protocol should help improve the experimental targeting of select cell populations.lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:languageenglld:pubmed
pubmed-article:20203671pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:citationSubsetIMlld:pubmed
pubmed-article:20203671pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20203671pubmed:statusMEDLINElld:pubmed
pubmed-article:20203671pubmed:issn1750-2799lld:pubmed
pubmed-article:20203671pubmed:authorpubmed-author:RothBryan LBLlld:pubmed
pubmed-article:20203671pubmed:authorpubmed-author:DongShuyunSlld:pubmed
pubmed-article:20203671pubmed:authorpubmed-author:RoganSarah...lld:pubmed
pubmed-article:20203671pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20203671pubmed:volume5lld:pubmed
pubmed-article:20203671pubmed:ownerNLMlld:pubmed
pubmed-article:20203671pubmed:authorsCompleteYlld:pubmed
pubmed-article:20203671pubmed:pagination561-73lld:pubmed
pubmed-article:20203671pubmed:dateRevised2011-2-14lld:pubmed
pubmed-article:20203671pubmed:meshHeadingpubmed-meshheading:20203671...lld:pubmed
pubmed-article:20203671pubmed:meshHeadingpubmed-meshheading:20203671...lld:pubmed
pubmed-article:20203671pubmed:meshHeadingpubmed-meshheading:20203671...lld:pubmed
pubmed-article:20203671pubmed:meshHeadingpubmed-meshheading:20203671...lld:pubmed
pubmed-article:20203671pubmed:meshHeadingpubmed-meshheading:20203671...lld:pubmed
pubmed-article:20203671pubmed:meshHeadingpubmed-meshheading:20203671...lld:pubmed
pubmed-article:20203671pubmed:meshHeadingpubmed-meshheading:20203671...lld:pubmed
pubmed-article:20203671pubmed:meshHeadingpubmed-meshheading:20203671...lld:pubmed
pubmed-article:20203671pubmed:meshHeadingpubmed-meshheading:20203671...lld:pubmed
pubmed-article:20203671pubmed:meshHeadingpubmed-meshheading:20203671...lld:pubmed
pubmed-article:20203671pubmed:year2010lld:pubmed
pubmed-article:20203671pubmed:articleTitleDirected molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs.lld:pubmed
pubmed-article:20203671pubmed:affiliationDepartment of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.lld:pubmed
pubmed-article:20203671pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:20203671pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
pubmed-article:20203671pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed