Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2010-4-19
pubmed:abstractText
Echo planar imaging (EPI), the gold standard technique for functional MRI (fMRI), is based on fast magnetic field gradient switching. These time-varying magnetic fields induce electric (E) fields in the brain that could influence neuronal activity; but this has not been tested. Here we assessed the effects of EPI on brain glucose metabolism (marker of brain function) using PET and 18F 2-fluoro-2-deoxy-D-glucose ((18)FDG). Fifteen healthy subjects were in a 4 T magnet during the (18)FDG uptake period twice: with (ON) and without (OFF) EPI gradients pulses along the z-axis (G(z): 23 mT/m; 250 mus rise-time; 920 Hz). The E-field from these EPI pulses is non-homogeneous, increasing linearly from the gradient's isocenter (radial and z directions), which allowed us to assess the correlation between local strength of the E-field and the regional metabolic differences between ON and OFF sessions. Metabolic images were normalized to metabolic activity in the plane positioned at the gradient's isocenter where E=0 for both ON and OFF conditions. Statistical parametric analyses used to identify regions that differed between ON versus OFF (p<0.05, corrected) showed that the relative metabolism was lower in areas at the poles of the brain (inferior occipital and frontal and superior parietal cortices) for ON than for OFF, which was also documented with individual region of interest analysis. Moreover the magnitude of the metabolic decrements was significantly correlated with the estimated strength of E (r=0.68, p<0.0001); the stronger the E-field the larger the decreases. However, we did not detect differences between ON versus OFF conditions on mood ratings nor on absolute whole brain metabolism. This data provides preliminary evidence that EPI sequences may affect neuronal activity and merits further investigation.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-10080370, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-10559769, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-10609989, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-10910346, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-11064404, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-11137053, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-11241710, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-11323819, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-12353289, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-12727683, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-1400644, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-14702256, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-15083522, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-15265587, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-15309043, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-15556660, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-16087451, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-16649202, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-17662472, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-17704812, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-17762075, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-17921027, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-18241299, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-18243042, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-18348596, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-18755160, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-18851858, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-18995825, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-19021206, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-1925560, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-19549837, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-3497163, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-363301, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-6693941, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-8071692, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-8416587, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-8930851, http://linkedlifedata.com/resource/pubmed/commentcorrection/20156571-9448240
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jun
pubmed:issn
1095-9572
pubmed:author
pubmed:copyrightInfo
Published by Elsevier Inc.
pubmed:issnType
Electronic
pubmed:volume
51
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
623-8
pubmed:dateRevised
2011-7-28
pubmed:meshHeading
pubmed:year
2010
pubmed:articleTitle
Effects of low-field magnetic stimulation on brain glucose metabolism.
pubmed:affiliation
National Institute on Drug Abuse, Bethesda, MD 20892, USA. nvolkow@nida.nih.gov
pubmed:publicationType
Journal Article, Research Support, N.I.H., Intramural