Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2010-4-12
pubmed:abstractText
The role of axial structures, especially the notochord, in metanephric kidney development has not been directly examined. Here, we showed that disruption of the notochord and floor plate by diphtheria toxin (DTA)-mediated cell ablation did not disrupt nephrogenesis, but resulted in kidney fusions, resembling horseshoe kidneys in humans. Axial disruptions led to more medially positioned metanephric mesenchyme (MM) in midgestation. However, neither axial disruption nor the ensuing positional shift of the MM affected the formation of nephrons and other structures within the kidney. Response to Shh signaling was greatly reduced in midline cell populations in the mutants. To further ascertain the molecular mechanism underlying these abnormalities, we specifically inactivated Shh in the notochord and floor plate. We found that depleting the axial source of Shh was sufficient to cause kidney fusion, even in the presence of the notochord. These results suggested that the notochord is dispensable for nephrogenesis but required for the correct positioning of the metanephric kidney. Axial Shh signal appears to be critical in conferring the effects of axial structures on kidney positioning along the mediolateral axis. These studies also provide insights into the pathogenesis of horseshoe kidneys and how congenital kidney defects can be caused by signals outside the renal primordia.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-10460514, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-10720431, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-12361967, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-12399320, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-12490201, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-14521544, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-15057312, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-15569159, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-15634693, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-15759277, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-15890825, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-16396903, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-16407399, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-16421190, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-16641094, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-16822174, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-17916348, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-18064671, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-18842818, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-19085015, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-19272374, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-19415630, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-5047435, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-7580143, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-8666231, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-8837770, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-9013929, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-9374399, http://linkedlifedata.com/resource/pubmed/commentcorrection/20152829-9916792
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Apr
pubmed:issn
1095-564X
pubmed:author
pubmed:copyrightInfo
Copyright (c) 2010 Elsevier Inc. All rights reserved.
pubmed:issnType
Electronic
pubmed:day
15
pubmed:volume
340
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
518-27
pubmed:dateRevised
2011-7-28
pubmed:meshHeading
pubmed-meshheading:20152829-Animals, pubmed-meshheading:20152829-Animals, Newborn, pubmed-meshheading:20152829-Body Patterning, pubmed-meshheading:20152829-Diphtheria Toxin, pubmed-meshheading:20152829-Embryo, Mammalian, pubmed-meshheading:20152829-Embryonic Development, pubmed-meshheading:20152829-Gene Expression Regulation, Developmental, pubmed-meshheading:20152829-Hedgehog Proteins, pubmed-meshheading:20152829-Immunohistochemistry, pubmed-meshheading:20152829-In Situ Hybridization, pubmed-meshheading:20152829-Kidney, pubmed-meshheading:20152829-Mesoderm, pubmed-meshheading:20152829-Mice, pubmed-meshheading:20152829-Mice, Transgenic, pubmed-meshheading:20152829-Models, Biological, pubmed-meshheading:20152829-Mutation, pubmed-meshheading:20152829-Notochord, pubmed-meshheading:20152829-Signal Transduction, pubmed-meshheading:20152829-Transgenes
pubmed:year
2010
pubmed:articleTitle
Midline signaling regulates kidney positioning but not nephrogenesis through Shh.
pubmed:affiliation
Internal Medicine, Renal Division, Washington University School of Medicine, St Louis, MO 63110, USA.
pubmed:publicationType
Journal Article, Research Support, N.I.H., Extramural