Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19643711rdf:typepubmed:Citationlld:pubmed
pubmed-article:19643711lifeskim:mentionsumls-concept:C0031809lld:lifeskim
pubmed-article:19643711lifeskim:mentionsumls-concept:C0021880lld:lifeskim
pubmed-article:19643711lifeskim:mentionsumls-concept:C0184511lld:lifeskim
pubmed-article:19643711lifeskim:mentionsumls-concept:C0684321lld:lifeskim
pubmed-article:19643711lifeskim:mentionsumls-concept:C1881303lld:lifeskim
pubmed-article:19643711pubmed:issue4lld:pubmed
pubmed-article:19643711pubmed:dateCreated2010-7-27lld:pubmed
pubmed-article:19643711pubmed:abstractTextThe only established technique for intracranial pressure (ICP) measurement is an invasive procedure requiring surgically penetrating the skull for placing pressure sensors. However, there are many clinical scenarios where a noninvasive assessment of ICP is highly desirable. With an assumption of a linear relationship among arterial blood pressure (ABP), ICP, and flow velocity (FV) of major cerebral arteries, an approach has been previously developed to estimate ICP noninvasively, the core of which is the linear estimation of the coefficients f between ABP and ICP from the coefficients w calculated between ABP and FV. In this paper, motivated by the fact that the relationships among these three signals are so complex that simple linear models may be not adequate to depict the relationship between these two coefficients, i.e., f and w , we investigate the adoption of several nonlinear kernel regression approaches, including kernel spectral regression (KSR) and support vector machine (SVM) to improve the original linear ICP estimation approach. The ICP estimation results on a dataset consisting of 446 entries from 23 patients show that the mean ICP error by the nonlinear approaches can be reduced to below 6.0 mmHg compared to 6.7 mmHg of the original approach. The statistical test also demonstrates that the ICP error by the proposed nonlinear kernel approaches is statistically smaller than that estimated with the original linear model (p < 0.05). The current result confirms the potential of using nonlinear regression to achieve more accurate noninvasive ICP assessment.lld:pubmed
pubmed-article:19643711pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:languageenglld:pubmed
pubmed-article:19643711pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19643711pubmed:citationSubsetIMlld:pubmed
pubmed-article:19643711pubmed:statusMEDLINElld:pubmed
pubmed-article:19643711pubmed:monthJullld:pubmed
pubmed-article:19643711pubmed:issn1558-0032lld:pubmed
pubmed-article:19643711pubmed:authorpubmed-author:BergsneiderMa...lld:pubmed
pubmed-article:19643711pubmed:authorpubmed-author:HuXiaoXlld:pubmed
pubmed-article:19643711pubmed:authorpubmed-author:PengXuXlld:pubmed
pubmed-article:19643711pubmed:authorpubmed-author:KasprowiczMag...lld:pubmed
pubmed-article:19643711pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19643711pubmed:volume14lld:pubmed
pubmed-article:19643711pubmed:ownerNLMlld:pubmed
pubmed-article:19643711pubmed:authorsCompleteYlld:pubmed
pubmed-article:19643711pubmed:pagination971-8lld:pubmed
pubmed-article:19643711pubmed:dateRevised2011-8-1lld:pubmed
pubmed-article:19643711pubmed:meshHeadingpubmed-meshheading:19643711...lld:pubmed
pubmed-article:19643711pubmed:meshHeadingpubmed-meshheading:19643711...lld:pubmed
pubmed-article:19643711pubmed:meshHeadingpubmed-meshheading:19643711...lld:pubmed
pubmed-article:19643711pubmed:meshHeadingpubmed-meshheading:19643711...lld:pubmed
pubmed-article:19643711pubmed:year2010lld:pubmed
pubmed-article:19643711pubmed:articleTitleImproved noninvasive intracranial pressure assessment with nonlinear kernel regression.lld:pubmed
pubmed-article:19643711pubmed:affiliationNeural Systems and Dynamics Laboratory, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA. pengxu@mednet.ucla.edulld:pubmed
pubmed-article:19643711pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19643711pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
pubmed-article:19643711pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed