Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
4
pubmed:dateCreated
2010-7-27
pubmed:abstractText
The only established technique for intracranial pressure (ICP) measurement is an invasive procedure requiring surgically penetrating the skull for placing pressure sensors. However, there are many clinical scenarios where a noninvasive assessment of ICP is highly desirable. With an assumption of a linear relationship among arterial blood pressure (ABP), ICP, and flow velocity (FV) of major cerebral arteries, an approach has been previously developed to estimate ICP noninvasively, the core of which is the linear estimation of the coefficients f between ABP and ICP from the coefficients w calculated between ABP and FV. In this paper, motivated by the fact that the relationships among these three signals are so complex that simple linear models may be not adequate to depict the relationship between these two coefficients, i.e., f and w , we investigate the adoption of several nonlinear kernel regression approaches, including kernel spectral regression (KSR) and support vector machine (SVM) to improve the original linear ICP estimation approach. The ICP estimation results on a dataset consisting of 446 entries from 23 patients show that the mean ICP error by the nonlinear approaches can be reduced to below 6.0 mmHg compared to 6.7 mmHg of the original approach. The statistical test also demonstrates that the ICP error by the proposed nonlinear kernel approaches is statistically smaller than that estimated with the original linear model (p < 0.05). The current result confirms the potential of using nonlinear regression to achieve more accurate noninvasive ICP assessment.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-10794293, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-12393763, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-12450025, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-12511755, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-15120260, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-16485748, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-18080758, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-18252602, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-18779082, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-19057328, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-3594014, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-46957, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-7802280, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-8356880, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-9104864, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-9218290, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-9412634, http://linkedlifedata.com/resource/pubmed/commentcorrection/19643711-9576246
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
1558-0032
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
14
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
971-8
pubmed:dateRevised
2011-8-1
pubmed:meshHeading
pubmed:year
2010
pubmed:articleTitle
Improved noninvasive intracranial pressure assessment with nonlinear kernel regression.
pubmed:affiliation
Neural Systems and Dynamics Laboratory, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA. pengxu@mednet.ucla.edu
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural