Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
34
pubmed:dateCreated
2009-8-26
pubmed:abstractText
The role of Notch signaling in cartilage differentiation and maturation in vivo was examined. Conditional Notch pathway gain and loss of function was achieved using a Cre/loxP approach to manipulate Notch signaling in cartilage precursors and chondrocytes of the developing mouse embryo. Conditional overexpression of activated Notch intracellular domain (NICD) in the chondrocyte lineage results in skeletal malformations with decreased cartilage precursor proliferation and inhibited hypertrophic chondrocyte differentiation. Likewise, expression of NICD in cartilage precursors inhibits sclerotome differentiation, resulting in severe axial skeleton abnormalities. Furthermore, conditional loss of Notch signaling via RBP-J gene deletion in the chondrocyte lineage results in increased chondrocyte proliferation and skeletal malformations consistent with the observed increase in hypertrophic chondrocytes. In addition, the Notch pathway inhibits expression of Sox9 and its target genes required for normal chondrogenic cell proliferation and differentiation. Together, our results demonstrate that appropriate Notch pathway signaling is essential for proper chondrocyte progenitor proliferation and for the normal progression of hypertrophic chondrocyte differentiation into bone in the developing appendicular and axial skeletal elements.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-10686612, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-11371614, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-11969258, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-11970890, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-12039915, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-12414734, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-12668592, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-12902164, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-14586790, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-14657333, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-15162503, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-16622731, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-16724326, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-17064679, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-17350610, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-17600784, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-17681139, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-17685488, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-18297083, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-18297084, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-18354251, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-18420737, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-18612084, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-18758478, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-18775957, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-18832173, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-6463905, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-8542284, http://linkedlifedata.com/resource/pubmed/commentcorrection/19590010-9927599
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Aug
pubmed:issn
1091-6490
pubmed:author
pubmed:issnType
Electronic
pubmed:day
25
pubmed:volume
106
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
14420-5
pubmed:dateRevised
2010-9-27
pubmed:meshHeading
pubmed-meshheading:19590010-Animals, pubmed-meshheading:19590010-Bone and Bones, pubmed-meshheading:19590010-Cartilage, pubmed-meshheading:19590010-Cell Differentiation, pubmed-meshheading:19590010-Cell Lineage, pubmed-meshheading:19590010-Cell Proliferation, pubmed-meshheading:19590010-Chondrocytes, pubmed-meshheading:19590010-Embryo, Mammalian, pubmed-meshheading:19590010-Female, pubmed-meshheading:19590010-Gene Expression Regulation, Developmental, pubmed-meshheading:19590010-Immunohistochemistry, pubmed-meshheading:19590010-In Situ Hybridization, pubmed-meshheading:19590010-Male, pubmed-meshheading:19590010-Mice, pubmed-meshheading:19590010-Osteoblasts, pubmed-meshheading:19590010-Receptor, Notch1, pubmed-meshheading:19590010-Reverse Transcriptase Polymerase Chain Reaction, pubmed-meshheading:19590010-Signal Transduction
pubmed:year
2009
pubmed:articleTitle
Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development.
pubmed:affiliation
Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
pubmed:publicationType
Journal Article, Research Support, N.I.H., Extramural