Source:http://linkedlifedata.com/resource/pubmed/id/18928369
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
4
|
pubmed:dateCreated |
2009-3-23
|
pubmed:abstractText |
Recently multineuronal recording has allowed us to observe patterned firings, synchronization, oscillation, and global state transitions in the recurrent networks of central nervous systems. We propose a learning algorithm based on the process of information maximization in a recurrent network, which we call recurrent infomax (RI). RI maximizes information retention and thereby minimizes information loss through time in a network. We find that feeding in external inputs consisting of information obtained from photographs of natural scenes into an RI-based model of a recurrent network results in the appearance of Gabor-like selectivity quite similar to that existing in simple cells of the primary visual cortex. We find that without external input, this network exhibits cell assembly-like and synfire chain-like spontaneous activity as well as a critical neuronal avalanche. In addition, we find that RI embeds externally input temporal firing patterns to the network so that it spontaneously reproduces these patterns after learning. RI provides a simple framework to explain a wide range of phenomena observed in in vivo and in vitro neuronal networks, and it will provide a novel understanding of experimental results for multineuronal activity and plasticity from an information-theoretic point of view.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:month |
Apr
|
pubmed:issn |
0899-7667
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
21
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
1038-67
|
pubmed:meshHeading | |
pubmed:year |
2009
|
pubmed:articleTitle |
Recurrent infomax generates cell assemblies, neuronal avalanches, and simple cell-like selectivity.
|
pubmed:affiliation |
Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan. ttakuma@mbs.med.kyoto-u.ac.jp
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|