Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:dateCreated
2008-9-26
pubmed:abstractText
Two novel methods for genome wide selection (GWS) were examined for predicting the genetic merit of animals using SNP information alone. A panel of 1,546 dairy bulls with reliable EBVs was genotyped for 15,380 SNPs that spanned the whole bovine genome. Two complexity reduction methods were used, partial least squares (PLS) and regression using a genetic algorithm (GAR), to find optimal solutions of EBVs against SNP information. Extensive internal cross-validation was used tofind the best predictive models followed by external validation (without direct use of the pedigree or SNP location). Both PLS and GAR provided both accurate fit to the training data set for somatic cell count (SCC) (max r = 0.83) and fertility (max r = 0.88) and showed an accuracy of prediction of r = 0.47 for SCC, and r = 0.72 for fertility. This is the first empirical demonstration that genome wide selection can account for a very high proportion of additive genetic variation in fitness traits whilst exploiting only a small percentage of available SNP information, without use of pedigree or QTL mapping. PLS was computationally more efficient than GAR.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:issn
1424-6074
pubmed:author
pubmed:issnType
Print
pubmed:volume
132
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
219-23
pubmed:meshHeading
pubmed:year
2008
pubmed:articleTitle
Predicting genetic merit for mastitis and fertility in dairy cattle using genome wide selection and high density SNP screens.
pubmed:affiliation
Co-operative Research Centre for Innovative Dairy Products-CRC IDP ReproGen, Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, The University of Sydney, Camden, Australia. raadsma@camden.usyd.edu.au
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't