Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2008-5-16
pubmed:abstractText
In this article we consider the problem of fitting pattern mixture models to longitudinal data when there are many unique dropout times. We propose a marginally specified latent class pattern mixture model. The marginal mean is assumed to follow a generalized linear model, whereas the mean conditional on the latent class and random effects is specified separately. Because the dimension of the parameter vector of interest (the marginal regression coefficients) does not depend on the assumed number of latent classes, we propose to treat the number of latent classes as a random variable. We specify a prior distribution for the number of classes, and calculate (approximate) posterior model probabilities. In order to avoid the complications with implementing a fully Bayesian model, we propose a simple approximation to these posterior probabilities. The ideas are illustrated using data from a longitudinal study of depression in HIV-infected women.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-11276032, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-11314994, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-12071407, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-12925330, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-14969461, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-15116353, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-15180654, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-15226133, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-16542243, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-16984323, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-9004395, http://linkedlifedata.com/resource/pubmed/commentcorrection/17900312-9290506
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Jun
pubmed:issn
1541-0420
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
64
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
538-45
pubmed:dateRevised
2011-4-5
pubmed:meshHeading
pubmed:year
2008
pubmed:articleTitle
A general class of pattern mixture models for nonignorable dropout with many possible dropout times.
pubmed:affiliation
Center for Health Research, Geisinger Health System, Danville, Pennsylvania 17822, USA. jaroy@geisinger.edu
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural