Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17633686rdf:typepubmed:Citationlld:pubmed
pubmed-article:17633686lifeskim:mentionsumls-concept:C0205177lld:lifeskim
pubmed-article:17633686lifeskim:mentionsumls-concept:C0441889lld:lifeskim
pubmed-article:17633686lifeskim:mentionsumls-concept:C0036849lld:lifeskim
pubmed-article:17633686lifeskim:mentionsumls-concept:C0444504lld:lifeskim
pubmed-article:17633686lifeskim:mentionsumls-concept:C1442518lld:lifeskim
pubmed-article:17633686lifeskim:mentionsumls-concept:C1552652lld:lifeskim
pubmed-article:17633686lifeskim:mentionsumls-concept:C1552685lld:lifeskim
pubmed-article:17633686lifeskim:mentionsumls-concept:C1705195lld:lifeskim
pubmed-article:17633686lifeskim:mentionsumls-concept:C1521738lld:lifeskim
pubmed-article:17633686pubmed:dateCreated2007-7-18lld:pubmed
pubmed-article:17633686pubmed:abstractTextWe describe a new approach for estimating the posterior probability of tissue labels. Conventional likelihood models are combined with a curve length prior on boundaries, and an approximate posterior distribution on labels is sought via the Mean Field approach. Optimizing the resulting estimator by gradient descent leads to a level set style algorithm where the level set functions are the logarithm-of-odds encoding of the posterior label probabilities in an unconstrained linear vector space. Applications with more than two labels are easily accommodated. The label assignment is accomplished by the Maximum A Posteriori rule, so there are no problems of "overlap" or "vacuum". We test the method on synthetic images with additive noise. In addition, we segment a magnetic resonance scan into the major brain compartments and subcortical structures.lld:pubmed
pubmed-article:17633686pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17633686pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17633686pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17633686pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17633686pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17633686pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17633686pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17633686pubmed:languageenglld:pubmed
pubmed-article:17633686pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17633686pubmed:citationSubsetIMlld:pubmed
pubmed-article:17633686pubmed:statusMEDLINElld:pubmed
pubmed-article:17633686pubmed:issn1011-2499lld:pubmed
pubmed-article:17633686pubmed:authorpubmed-author:KikinisRonRlld:pubmed
pubmed-article:17633686pubmed:authorpubmed-author:WellsWilliam...lld:pubmed
pubmed-article:17633686pubmed:authorpubmed-author:PohlKilian...lld:pubmed
pubmed-article:17633686pubmed:issnTypePrintlld:pubmed
pubmed-article:17633686pubmed:volume20lld:pubmed
pubmed-article:17633686pubmed:ownerNLMlld:pubmed
pubmed-article:17633686pubmed:authorsCompleteYlld:pubmed
pubmed-article:17633686pubmed:pagination26-37lld:pubmed
pubmed-article:17633686pubmed:dateRevised2011-9-22lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:meshHeadingpubmed-meshheading:17633686...lld:pubmed
pubmed-article:17633686pubmed:year2007lld:pubmed
pubmed-article:17633686pubmed:articleTitleActive mean fields: solving the mean field approximation in the level set framework.lld:pubmed
pubmed-article:17633686pubmed:affiliationSurgical Planning Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA. pohl@bwh.harvard.edulld:pubmed
pubmed-article:17633686pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17633686pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:17633686pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
pubmed-article:17633686pubmed:publicationTypeEvaluation Studieslld:pubmed
pubmed-article:17633686pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17633686lld:pubmed