Source:http://linkedlifedata.com/resource/pubmed/id/17633686
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:dateCreated |
2007-7-18
|
pubmed:abstractText |
We describe a new approach for estimating the posterior probability of tissue labels. Conventional likelihood models are combined with a curve length prior on boundaries, and an approximate posterior distribution on labels is sought via the Mean Field approach. Optimizing the resulting estimator by gradient descent leads to a level set style algorithm where the level set functions are the logarithm-of-odds encoding of the posterior label probabilities in an unconstrained linear vector space. Applications with more than two labels are easily accommodated. The label assignment is accomplished by the Maximum A Posteriori rule, so there are no problems of "overlap" or "vacuum". We test the method on synthetic images with additive noise. In addition, we segment a magnetic resonance scan into the major brain compartments and subcortical structures.
|
pubmed:grant |
http://linkedlifedata.com/resource/pubmed/grant/P41-RR13218,
http://linkedlifedata.com/resource/pubmed/grant/R01 NS051826-01,
http://linkedlifedata.com/resource/pubmed/grant/R01-NS051826,
http://linkedlifedata.com/resource/pubmed/grant/U24-RR021382,
http://linkedlifedata.com/resource/pubmed/grant/U41-RR019703,
http://linkedlifedata.com/resource/pubmed/grant/U54 EB005149-01,
http://linkedlifedata.com/resource/pubmed/grant/U54-EB005149
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:issn |
1011-2499
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
20
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
26-37
|
pubmed:dateRevised |
2011-9-22
|
pubmed:meshHeading |
pubmed-meshheading:17633686-Algorithms,
pubmed-meshheading:17633686-Artificial Intelligence,
pubmed-meshheading:17633686-Brain,
pubmed-meshheading:17633686-Humans,
pubmed-meshheading:17633686-Image Enhancement,
pubmed-meshheading:17633686-Image Interpretation, Computer-Assisted,
pubmed-meshheading:17633686-Imaging, Three-Dimensional,
pubmed-meshheading:17633686-Magnetic Resonance Imaging,
pubmed-meshheading:17633686-Pattern Recognition, Automated,
pubmed-meshheading:17633686-Reproducibility of Results,
pubmed-meshheading:17633686-Sensitivity and Specificity
|
pubmed:year |
2007
|
pubmed:articleTitle |
Active mean fields: solving the mean field approximation in the level set framework.
|
pubmed:affiliation |
Surgical Planning Laboratory, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA. pohl@bwh.harvard.edu
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, Non-P.H.S.,
Research Support, Non-U.S. Gov't,
Evaluation Studies,
Research Support, N.I.H., Extramural
|