rdf:type |
|
lifeskim:mentions |
|
pubmed:dateCreated |
2007-8-8
|
pubmed:abstractText |
Recent adaptations of the spatial scan approach to detecting disease clusters have addressed the problem of finding clusters that occur in non-compact and non-circular shapes--such as along roads or river networks. Some of these approaches may have difficulty defining cluster boundaries precisely, and tend to over-fit data with very irregular (and implausible) clusters shapes.
|
pubmed:commentsCorrections |
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:issn |
1476-072X
|
pubmed:author |
|
pubmed:issnType |
Electronic
|
pubmed:volume |
6
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
28
|
pubmed:dateRevised |
2010-9-15
|
pubmed:meshHeading |
pubmed-meshheading:17615077-Canada,
pubmed-meshheading:17615077-Cluster Analysis,
pubmed-meshheading:17615077-Data Interpretation, Statistical,
pubmed-meshheading:17615077-Disease Outbreaks,
pubmed-meshheading:17615077-Female,
pubmed-meshheading:17615077-Humans,
pubmed-meshheading:17615077-Male,
pubmed-meshheading:17615077-Models, Statistical,
pubmed-meshheading:17615077-Sensitivity and Specificity
|
pubmed:year |
2007
|
pubmed:articleTitle |
Adaptations for finding irregularly shaped disease clusters.
|
pubmed:affiliation |
School of Geography and Earth Sciences, McMaster University, Hamilton, Canada. niwiyi@gmail.com
|
pubmed:publicationType |
Journal Article,
Review,
Research Support, Non-U.S. Gov't
|