Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:dateCreated
2007-3-14
pubmed:abstractText
We present a method for two-sample hypothesis testing for statistical shape analysis using nonlinear shape models. Our approach uses a true multivariate permutation test that is invariant to the scale of different model parameters and that explicitly accounts for the dependencies between variables. We apply our method to m-rep models of the lateral ventricles to examine the amount of shape variability in twins with different degrees of genetic similarity.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:issn
1011-2499
pubmed:author
pubmed:issnType
Print
pubmed:volume
19
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
15-26
pubmed:meshHeading
pubmed-meshheading:17354681-Algorithms, pubmed-meshheading:17354681-Artificial Intelligence, pubmed-meshheading:17354681-Cerebral Ventricles, pubmed-meshheading:17354681-Computer Simulation, pubmed-meshheading:17354681-Humans, pubmed-meshheading:17354681-Image Enhancement, pubmed-meshheading:17354681-Image Interpretation, Computer-Assisted, pubmed-meshheading:17354681-Magnetic Resonance Imaging, pubmed-meshheading:17354681-Models, Biological, pubmed-meshheading:17354681-Models, Statistical, pubmed-meshheading:17354681-Nonlinear Dynamics, pubmed-meshheading:17354681-Pattern Recognition, Automated, pubmed-meshheading:17354681-Reproducibility of Results, pubmed-meshheading:17354681-Schizophrenia, pubmed-meshheading:17354681-Sensitivity and Specificity, pubmed-meshheading:17354681-Twins, Monozygotic
pubmed:year
2005
pubmed:articleTitle
Hypothesis testing with nonlinear shape models.
pubmed:affiliation
Dept. of Computer Science, Univ. of North Carolina, Chapel Hill, NC 27599, USA. tterribe@cs.unc.edu
pubmed:publicationType
Journal Article