Source:http://linkedlifedata.com/resource/pubmed/id/16686034
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
Pt 2
|
pubmed:dateCreated |
2006-5-11
|
pubmed:abstractText |
We present a novel technique for the automatic formation of vascular trees from segmented tubular structures. Our method combines a minimum spanning tree algorithm with a minimization criterion of the Mahalanobis distance. First, a multivariate class of connected junctions is defined using a set of trained vascular trees and their corresponding image volumes. Second, a minimum spanning tree algorithm forms the tree using the Mahalanobis distance of each connection from the "connected" class as a cost function. Our technique allows for the best combination of the discrimination criteria between connected and non-connected junctions and is also modality, organ and segmentation specific.
|
pubmed:grant | |
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:author | |
pubmed:volume |
8
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
806-12
|
pubmed:dateRevised |
2011-9-22
|
pubmed:meshHeading |
pubmed-meshheading:16686034-Algorithms,
pubmed-meshheading:16686034-Angiography,
pubmed-meshheading:16686034-Artificial Intelligence,
pubmed-meshheading:16686034-Blood Vessels,
pubmed-meshheading:16686034-Humans,
pubmed-meshheading:16686034-Image Enhancement,
pubmed-meshheading:16686034-Image Interpretation, Computer-Assisted,
pubmed-meshheading:16686034-Imaging, Three-Dimensional,
pubmed-meshheading:16686034-Information Storage and Retrieval,
pubmed-meshheading:16686034-Pattern Recognition, Automated,
pubmed-meshheading:16686034-Reproducibility of Results,
pubmed-meshheading:16686034-Sensitivity and Specificity,
pubmed-meshheading:16686034-User-Computer Interface
|
pubmed:year |
2005
|
pubmed:articleTitle |
Automatic vascular tree formation using the Mahalanobis distance.
|
pubmed:affiliation |
Computer-Aided Diagnosis and Display Lab, Department of Radiology, The University of North Carolina at Chapel Hill, 27510 Chapel Hill, USA. jomier@unc.edu
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't,
Evaluation Studies,
Research Support, N.I.H., Extramural
|