Source:http://linkedlifedata.com/resource/pubmed/id/16483601
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
4
|
pubmed:dateCreated |
2006-3-13
|
pubmed:databankReference | |
pubmed:abstractText |
The Zap1 transcription factor controls expression of genes that regulate zinc homeostasis in Saccharomyces cerevisiae. The solution structure of two zinc fingers (zf1-2(CA3)) derived from a zinc-responsive domain of Zap1 (zf1-2) has been determined. Under zinc-limiting conditions, zinc finger 2 (zf2) from this domain has been shown to be a constitutive transcriptional activator. Moreover, repression of zf2 function in zinc-replete cells required zinc coordination to both canonical finger 1 (zf1) and zf2 metal sites, suggesting zf1-zf2 cooperativity underlies Zap1 metalloregulation. A structural basis for this cooperativity is identified here. Favorable inter-helical contacts in zf1-2(CA3) extend the individual finger hydrophobic cores through the zf1-zf2 interface. Tryptophan residues at position 5 in each finger provide numerous non-helical inter-finger contacts reminiscent of those observed in GLI1 zinc fingers 1 and 2. The molecular mechanism for zf1-dependent repression of zf2 transcriptional activation is explored further using NMR and CD titration studies. While zf1 independently forms a betabetaalpha solution structure, the majority of zf2 ensemble solution states do not adopt the canonical betabetaalpha zinc finger fold without zf1-zf2 interactions. Cooperative effects on Zn(II) affinities stemming from these finger-finger interactions are observed also in calorimetric studies, in which the 160(+/-20)nM (zf1) and 250(+/-40)nM (zf2) K(d) values for each individual finger increased substantially in the context of the zf1-2 protein (apparent K(dzf1-2WT)=4.6(+/-1.2)nM). On the basis of the above observations, we propose a mechanism for Zap1 transcriptional regulation in which zf1-zf2 interactions stabilize the betabetaalpha folded "repressed state" of the zf2 activation domain in the presence of cellular Zn(II) excess. Moreover, in contrast to earlier reports of <<1 labile zinc ion/Escherichia coli cell, the zf1-zf2 zinc affinities determined calorimetrically are consistent with Zn(II) levels >>1 labile zinc ion/eukaryotic cell.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:chemical |
http://linkedlifedata.com/resource/pubmed/chemical/Cysteine,
http://linkedlifedata.com/resource/pubmed/chemical/Repressor Proteins,
http://linkedlifedata.com/resource/pubmed/chemical/Saccharomyces cerevisiae Proteins,
http://linkedlifedata.com/resource/pubmed/chemical/Trans-Activators,
http://linkedlifedata.com/resource/pubmed/chemical/Transcription Factors,
http://linkedlifedata.com/resource/pubmed/chemical/ZAP1 protein, S cerevisiae
|
pubmed:status |
MEDLINE
|
pubmed:month |
Apr
|
pubmed:issn |
0022-2836
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:day |
7
|
pubmed:volume |
357
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
1167-83
|
pubmed:dateRevised |
2009-11-19
|
pubmed:meshHeading |
pubmed-meshheading:16483601-Amino Acid Sequence,
pubmed-meshheading:16483601-Cysteine,
pubmed-meshheading:16483601-Gene Expression Regulation, Fungal,
pubmed-meshheading:16483601-Humans,
pubmed-meshheading:16483601-Models, Molecular,
pubmed-meshheading:16483601-Molecular Sequence Data,
pubmed-meshheading:16483601-Nuclear Magnetic Resonance, Biomolecular,
pubmed-meshheading:16483601-Protein Conformation,
pubmed-meshheading:16483601-Repressor Proteins,
pubmed-meshheading:16483601-Saccharomyces cerevisiae,
pubmed-meshheading:16483601-Saccharomyces cerevisiae Proteins,
pubmed-meshheading:16483601-Sequence Alignment,
pubmed-meshheading:16483601-Trans-Activators,
pubmed-meshheading:16483601-Transcription Factors,
pubmed-meshheading:16483601-Zinc Fingers
|
pubmed:year |
2006
|
pubmed:articleTitle |
Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae.
|
pubmed:affiliation |
Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA.
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|