pubmed:abstractText |
Clustering the ESTs from a large dataset representing a single species is a convenient starting point for a number of investigations into gene discovery, genome evolution, expression patterns, and alternatively spliced transcripts. Several methods have been developed to accomplish this, the most widely available being UniGene, a public domain collection of gene-oriented clusters for over 45 different species created and maintained by NCBI. The goal is for each cluster to represent a unique gene, but currently it is not known how closely the overall results represent that reality. UniGene's build procedure begins with initial mRNA clusters before joining ESTs. UniGene's results for soybean indicate a significant amount of redundancy among some sequences reported to be unique mRNAs. To establish a valid non-redundant known gene set for Glycine max we applied our algorithm to the clustering of only mRNA sequences. The mRNA dataset was run through the algorithm using two different matching stringencies. The resulting cluster compositions were compared to each other and to UniGene. Clusters exhibiting differences among the three methods were analyzed by 1) nucleotide and amino acid alignment and 2) submitting authors conclusions to determine whether members of a single cluster represented the same gene or not.
|