pubmed-article:1582790 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:1582790 | lifeskim:mentions | umls-concept:C0019010 | lld:lifeskim |
pubmed-article:1582790 | lifeskim:mentions | umls-concept:C0007012 | lld:lifeskim |
pubmed-article:1582790 | lifeskim:mentions | umls-concept:C0035331 | lld:lifeskim |
pubmed-article:1582790 | lifeskim:mentions | umls-concept:C0242706 | lld:lifeskim |
pubmed-article:1582790 | lifeskim:mentions | umls-concept:C0242184 | lld:lifeskim |
pubmed-article:1582790 | lifeskim:mentions | umls-concept:C1280500 | lld:lifeskim |
pubmed-article:1582790 | lifeskim:mentions | umls-concept:C0547040 | lld:lifeskim |
pubmed-article:1582790 | pubmed:issue | 6 | lld:pubmed |
pubmed-article:1582790 | pubmed:dateCreated | 1992-6-16 | lld:pubmed |
pubmed-article:1582790 | pubmed:abstractText | Retinal leukocyte velocity and density were estimated using blue-field entoptic imaging techniques in a controlled double-masked study to determine the relative effects of oxygen and carbon dioxide on perimacular hemodynamics in single eyes of ten normal human subjects. Mild hypoxia (inspiration of 16% O2) did not significantly alter leukocyte velocity or density from room-air baseline levels. Supplementing 16% oxygen with 5% CO2 produced a tendency toward increased leukocyte velocity (+23%, P = 0.027) with no apparent effect on leukocyte density. Inspiration of pure oxygen was associated with significant reductions in both retinal leukocyte velocity (-20%, P less than 0.007) and density (-23%, P = 0.013) relative to room-air baseline levels. Supplementation of pure oxygen with 5% CO2 appeared to produce a dramatic change in perimacular hemodynamics, tending to increase leukocyte velocity (+26%, P = 0.018) with a limited density change (-11%, P = 0.049). These findings suggest that inspired 5% CO2 can counteract the profound inhibitory effects of excess oxygen on retinal hemodynamics in the functionally important perimacular capillary bed. | lld:pubmed |
pubmed-article:1582790 | pubmed:language | eng | lld:pubmed |
pubmed-article:1582790 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1582790 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:1582790 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1582790 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:1582790 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:1582790 | pubmed:month | May | lld:pubmed |
pubmed-article:1582790 | pubmed:issn | 0146-0404 | lld:pubmed |
pubmed-article:1582790 | pubmed:author | pubmed-author:SponselW EWE | lld:pubmed |
pubmed-article:1582790 | pubmed:author | pubmed-author:ZetlanS RSR | lld:pubmed |
pubmed-article:1582790 | pubmed:author | pubmed-author:DePaulK LKL | lld:pubmed |
pubmed-article:1582790 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:1582790 | pubmed:volume | 33 | lld:pubmed |
pubmed-article:1582790 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:1582790 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:1582790 | pubmed:pagination | 1864-9 | lld:pubmed |
pubmed-article:1582790 | pubmed:dateRevised | 2007-11-15 | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:meshHeading | pubmed-meshheading:1582790-... | lld:pubmed |
pubmed-article:1582790 | pubmed:year | 1992 | lld:pubmed |
pubmed-article:1582790 | pubmed:articleTitle | Retinal hemodynamic effects of carbon dioxide, hyperoxia, and mild hypoxia. | lld:pubmed |
pubmed-article:1582790 | pubmed:affiliation | Department of Ophthalmology, University of Wisconsin-Madison. | lld:pubmed |
pubmed-article:1582790 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:1582790 | pubmed:publicationType | Clinical Trial | lld:pubmed |
pubmed-article:1582790 | pubmed:publicationType | Randomized Controlled Trial | lld:pubmed |
pubmed-article:1582790 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1582790 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1582790 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1582790 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1582790 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1582790 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:1582790 | lld:pubmed |