Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
10
pubmed:dateCreated
2004-9-24
pubmed:abstractText
A number of computational tools are available for detecting signal peptides, but their abilities to locate the signal peptide cleavage sites vary significantly and are often less than satisfactory. We characterized a set of 270 secreted recombinant human proteins by automated Edman analysis and used the verified cleavage sites to evaluate the success rate of a number of computational prediction programs. An examination of the frequency of amino acid in the N-terminal region of the data set showed a preference of proline and glutamine but a bias against tyrosine. The data set was compared to the SWISS-PROT database and revealed a high percentage of discrepancies with cleavage site annotations that were computationally generated. The best program for predicting signal sequences was found to be SignalP 2.0-NN with an accuracy of 78.1% for cleavage site recognition. The new data set can be utilized for refining prediction algorithms, and we have built an improved version of profile hidden Markov model for signal peptides based on the new data.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-10065837, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-10592178, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-10829231, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-11058597, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-11093267, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-11099261, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-11297664, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-11313261, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-11786179, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-12538263, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-12576098, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-12622379, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-12975309, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-14724739, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-15223320, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-2911749, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-3416203, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-3447156, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-3714490, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-6220408, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-6499832, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-6852022, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-7683665, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-8307567, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-8649999, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-9242610, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-9242611, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-9723714, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-9783217, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-9918667, http://linkedlifedata.com/resource/pubmed/commentcorrection/15340161-9918945
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Oct
pubmed:issn
0961-8368
pubmed:author
pubmed:issnType
Print
pubmed:volume
13
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
2819-24
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
2004
pubmed:articleTitle
Signal peptide prediction based on analysis of experimentally verified cleavage sites.
pubmed:affiliation
Department of Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA. zemin@gene.com
pubmed:publicationType
Journal Article