rdf:type |
|
lifeskim:mentions |
umls-concept:C0333056,
umls-concept:C0439851,
umls-concept:C1254042,
umls-concept:C1514562,
umls-concept:C1516835,
umls-concept:C1552596,
umls-concept:C1704211,
umls-concept:C1742737,
umls-concept:C1880389,
umls-concept:C1883204,
umls-concept:C1883221,
umls-concept:C1947931,
umls-concept:C2755524
|
pubmed:issue |
4
|
pubmed:dateCreated |
2003-10-10
|
pubmed:abstractText |
Protein transport between the ER and the Golgi in mammalian cells occurs via large pleiomorphic carriers, and most current models suggest that these are formed by the fusion of small ER-derived COPII vesicles. We have examined the dynamics and structural features of these carriers during and after their formation from the ER by correlative video/light electron microscopy and tomography. We found that saccular carriers containing either the large supramolecular cargo procollagen or the small diffusible cargo protein VSVG arise through cargo concentration and direct en bloc protrusion of specialized ER domains in the vicinity of COPII-coated exit sites. This formation process is COPII dependent but does not involve budding and fusion of COPII-dependent vesicles. Fully protruded saccules then move centripetally, evolving into one of two types of carriers (with distinct kinetic and structural features). These findings provide an alternative framework for analysis of ER-to-Golgi traffic.
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
http://linkedlifedata.com/resource/pubmed/chemical/2,2'-Dipyridyl,
http://linkedlifedata.com/resource/pubmed/chemical/Antioxidants,
http://linkedlifedata.com/resource/pubmed/chemical/Ascorbic Acid,
http://linkedlifedata.com/resource/pubmed/chemical/Carrier Proteins,
http://linkedlifedata.com/resource/pubmed/chemical/Chelating Agents,
http://linkedlifedata.com/resource/pubmed/chemical/Coatomer Protein,
http://linkedlifedata.com/resource/pubmed/chemical/G protein, vesicular stomatitis...,
http://linkedlifedata.com/resource/pubmed/chemical/Guanosine Diphosphate,
http://linkedlifedata.com/resource/pubmed/chemical/Membrane Glycoproteins,
http://linkedlifedata.com/resource/pubmed/chemical/Monomeric GTP-Binding Proteins,
http://linkedlifedata.com/resource/pubmed/chemical/Phosphoproteins,
http://linkedlifedata.com/resource/pubmed/chemical/Procollagen,
http://linkedlifedata.com/resource/pubmed/chemical/SAR1 protein, S cerevisiae,
http://linkedlifedata.com/resource/pubmed/chemical/SEC31 protein, S cerevisiae,
http://linkedlifedata.com/resource/pubmed/chemical/Saccharomyces cerevisiae Proteins,
http://linkedlifedata.com/resource/pubmed/chemical/Vesicular Transport Proteins,
http://linkedlifedata.com/resource/pubmed/chemical/Viral Envelope Proteins
|
pubmed:status |
MEDLINE
|
pubmed:month |
Oct
|
pubmed:issn |
1534-5807
|
pubmed:author |
pubmed-author:BeznoussenkoGalina VGV,
pubmed-author:BurgerKoert N JKN,
pubmed-author:DeerinckThomas JTJ,
pubmed-author:EllismanMark HMH,
pubmed-author:GeertsWillie J CWJ,
pubmed-author:KosterAbraham JAJ,
pubmed-author:LuiniAlbertoA,
pubmed-author:LupettiPietroP,
pubmed-author:MartoneMaryann EME,
pubmed-author:MironovAlexander AAA,
pubmed-author:MironovAlexander AAAJr,
pubmed-author:SmithJeffrey DJD,
pubmed-author:TruccoAlvarA
|
pubmed:issnType |
Print
|
pubmed:volume |
5
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
583-94
|
pubmed:dateRevised |
2009-6-29
|
pubmed:meshHeading |
pubmed-meshheading:14536060-2,2'-Dipyridyl,
pubmed-meshheading:14536060-Animals,
pubmed-meshheading:14536060-Antioxidants,
pubmed-meshheading:14536060-Ascorbic Acid,
pubmed-meshheading:14536060-COP-Coated Vesicles,
pubmed-meshheading:14536060-Carrier Proteins,
pubmed-meshheading:14536060-Cell Line,
pubmed-meshheading:14536060-Cell Surface Extensions,
pubmed-meshheading:14536060-Cercopithecus aethiops,
pubmed-meshheading:14536060-Chelating Agents,
pubmed-meshheading:14536060-Chick Embryo,
pubmed-meshheading:14536060-Coatomer Protein,
pubmed-meshheading:14536060-Endoplasmic Reticulum,
pubmed-meshheading:14536060-Fibroblasts,
pubmed-meshheading:14536060-Golgi Apparatus,
pubmed-meshheading:14536060-Guanosine Diphosphate,
pubmed-meshheading:14536060-Humans,
pubmed-meshheading:14536060-Immunohistochemistry,
pubmed-meshheading:14536060-Membrane Glycoproteins,
pubmed-meshheading:14536060-Microinjections,
pubmed-meshheading:14536060-Microscopy, Immunoelectron,
pubmed-meshheading:14536060-Models, Biological,
pubmed-meshheading:14536060-Monomeric GTP-Binding Proteins,
pubmed-meshheading:14536060-Phosphoproteins,
pubmed-meshheading:14536060-Procollagen,
pubmed-meshheading:14536060-Protein Transport,
pubmed-meshheading:14536060-Rats,
pubmed-meshheading:14536060-Saccharomyces cerevisiae Proteins,
pubmed-meshheading:14536060-Time Factors,
pubmed-meshheading:14536060-Vesicular Transport Proteins,
pubmed-meshheading:14536060-Viral Envelope Proteins
|
pubmed:year |
2003
|
pubmed:articleTitle |
ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains.
|
pubmed:affiliation |
Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro, (Chieti), Italy.
|
pubmed:publicationType |
Journal Article,
Comparative Study,
Research Support, Non-U.S. Gov't
|