Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
3
pubmed:dateCreated
2001-3-8
pubmed:abstractText
A web-based software model was developed as an example for data mining in aphasiology. It is used for educating medical and engineering students. It is based upon a database of 254 aphasic patients which contains the diagnosis of the aphasia type, profiles of an aphasia test battery (Aachen Aphasia Test), and some further clinical information. In addition, the cerebral lesion profiles of 147 of these cases were standardized by transferring the coordinates of the lesions to a 3D reference brain based upon the ACPC coordinate system. Two artificial neural networks were used to perform a classification of the aphasia type. First, a coarse classification was achieved by using an assessment of spontaneous speech of the patient which produced correct results in 87% of the test cases. Data analysis tools were used to select four features of the 30 available test features to yield a more accurate diagnosis. This classifier produced correct results in 92% of the test cases. The neural network approach is similar to grouping performed in group studies, while the nearest-neighbor method shows a design more similar to case studies. It finds the neurolinguistic and the lesion data of patients whose AAT profiles are most similar to the user's input. This way lesion profiles can be compared to each other interindividually. The Aphasia Diagnoser is available on the Web address http://fuzzy.iau.dtu.dk/aphasia.nsf and thus should facilitate a discussion about the reliability and possibilities of data-mining techniques in aphasiology.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Dec
pubmed:issn
0093-934X
pubmed:author
pubmed:issnType
Print
pubmed:volume
75
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
390-8
pubmed:dateRevised
2007-11-15
pubmed:meshHeading
pubmed:year
2000
pubmed:articleTitle
An aphasia database on the internet: a model for computer-assisted analysis in aphasiology.
pubmed:affiliation
Department of Anatomy I, RWTH Aachen, Aachen, Germany. hubertus@cajal.medizin.rwth-aachen.de
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't