Source:http://linkedlifedata.com/resource/pubmed/id/10935716
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
6
|
pubmed:dateCreated |
2000-9-6
|
pubmed:abstractText |
A method for visualizing the function computed by a feedforward neural network is presented. It is most suitable for models with continuous inputs and a small number of outputs, where the output function is reasonably smooth, as in regression and probabilistic classification tasks. The visualization makes readily apparent the effects of each input and the way in which the functions deviate from a linear function. The visualization can also assist in identifying interactions in the fitted model. The method uses only the input-output relationship and thus can be applied to any predictive statistical model, including bagged and committee models, which are otherwise difficult to interpret. The visualization method is demonstrated on a neural network model of how the risk of lung cancer is affected by smoking and drinking.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:month |
Jun
|
pubmed:issn |
0899-7667
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
12
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
1337-53
|
pubmed:dateRevised |
2006-11-15
|
pubmed:meshHeading |
pubmed-meshheading:10935716-Alcohol Drinking,
pubmed-meshheading:10935716-Carcinoma, Squamous Cell,
pubmed-meshheading:10935716-Computer Graphics,
pubmed-meshheading:10935716-Feedback,
pubmed-meshheading:10935716-Humans,
pubmed-meshheading:10935716-Linear Models,
pubmed-meshheading:10935716-Lung Neoplasms,
pubmed-meshheading:10935716-Neural Networks (Computer),
pubmed-meshheading:10935716-Regression Analysis,
pubmed-meshheading:10935716-Risk Assessment,
pubmed-meshheading:10935716-Smoking
|
pubmed:year |
2000
|
pubmed:articleTitle |
Visualizing the function computed by a feedforward neural network.
|
pubmed:affiliation |
Bios Group LP, Santa Fe, NM 87501, USA.
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|