Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
5
pubmed:dateCreated
1998-12-11
pubmed:abstractText
The extent to which Ca2+-induced Ca2+ release (CICR) affects transmitter release is unknown. Continuous nerve stimulation (20-50 Hz) caused slow transient increases in miniature end-plate potential (MEPP) frequency (MEPP-hump) and intracellular free Ca2+ ([Ca2+]i) in presynaptic terminals (Ca2+-hump) in frog skeletal muscles over a period of minutes in a low Ca2+, high Mg2+ solution. Mn2+ quenched Indo-1 and Fura-2 fluorescence, thus indicating that stimulation was accompanied by opening of voltage-dependent Ca2+ channels. MEPP-hump depended on extracellular Ca2+ (0.05-0.2 mM) and stimulation frequency. Both the Ca2+- and MEPP-humps were blocked by 8-(N, N-diethylamino)octyl3,4,5-trimethoxybenzoate hydrochloride (TMB-8), ryanodine, and thapsigargin, but enhanced by CN-. Thus, Ca2+-hump is generated by the activation of CICR via ryanodine receptors by Ca2+ entry, producing MEPP-hump. A short interruption of tetanus (<1 min) during MEPP-hump quickly reduced MEPP frequency to a level attained under the effect of TMB-8 or thapsigargin, while resuming tetanus swiftly raised MEPP frequency to the previous or higher level. Thus, the steady/equilibrium condition balancing CICR and Ca2+ clearance occurs in nerve terminals with slow changes toward a greater activation of CICR (priming) during the rising phase of MEPP-hump and toward a smaller activation during the decay phase. A short pause applied after the end of MEPP- or Ca2+-hump affected little MEPP frequency or [Ca2+]i, but caused a quick increase (faster than MEPP- or Ca2+-hump) after the pause, whose magnitude increased with an increase in pause duration (<1 min), suggesting that Ca2+ entry-dependent inactivation, but not depriming process, explains the decay of the humps. The depriming process was seen by giving a much longer pause (>1 min). Thus, ryanodine receptors in frog motor nerve terminals are endowed with Ca2+ entry-dependent slow priming and fast inactivation mechanisms, as well as Ca2+ entry-dependent activation, and involved in asynchronous exocytosis. Physiological significance of CICR in presynaptic terminals was discussed.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-1148488, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-1331424, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-1350109, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-13800900, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-1432708, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-1484356, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-1648178, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-174144, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-181543, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-209171, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-2126748, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-2184763, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-2213592, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-2340859, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-2391656, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-2536366, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-2856095, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-2863864, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-3193957, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-3266079, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-3690324, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-3714044, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-3838314, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-4296699, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-4366843, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-4546545, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-4956407, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-6273532, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-6281582, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-6767024, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7171713, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7191960, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7512352, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7562634, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7596410, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7605634, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7634331, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7689983, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7718232, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7760519, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7791897, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7819496, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7828174, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7935764, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-7983538, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8027759, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8071882, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8101226, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8229800, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8309540, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8381210, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8419309, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8426230, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8461136, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8815877, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8824311, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-8982154, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-9003551, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-9041445, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-9215636, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-9234194, http://linkedlifedata.com/resource/pubmed/commentcorrection/9806968-9292729
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
http://linkedlifedata.com/resource/pubmed/chemical/1,2-bis(2-aminophenoxy)ethane-N,N,N'..., http://linkedlifedata.com/resource/pubmed/chemical/8-(N,N-diethylamino)octyl-3,4,5-trim..., http://linkedlifedata.com/resource/pubmed/chemical/Calcium, http://linkedlifedata.com/resource/pubmed/chemical/Calcium Channel Blockers, http://linkedlifedata.com/resource/pubmed/chemical/Chelating Agents, http://linkedlifedata.com/resource/pubmed/chemical/Egtazic Acid, http://linkedlifedata.com/resource/pubmed/chemical/Fluorescent Dyes, http://linkedlifedata.com/resource/pubmed/chemical/Gallic Acid, http://linkedlifedata.com/resource/pubmed/chemical/Magnesium, http://linkedlifedata.com/resource/pubmed/chemical/Neurotransmitter Agents, http://linkedlifedata.com/resource/pubmed/chemical/Ryanodine Receptor Calcium Release...
pubmed:status
MEDLINE
pubmed:month
Nov
pubmed:issn
0022-1295
pubmed:author
More...