Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
1998-10-5
pubmed:abstractText
This paper presents two new methods for robust parameter estimation of mixtures in the context of magnetic resonance (MR) data segmentation. The head is constituted of different types of tissue that can be modeled by a finite mixture of multivariate Gaussian distributions. Our goal is to estimate accurately the statistics of desired tissues in presence of other ones of lesser interest. These latter can be considered as outliers and can severely bias the estimates of the former. For this purpose, we introduce a first method, which is an extension of the expectation-maximization (EM) algorithm, that estimates parameters of Gaussian mixtures but incorporates an outlier rejection scheme which allows to compute the properties of the desired tissues in presence of atypical data. The second method is based on genetic algorithms and is well suited for estimating the parameters of mixtures of different kind of distributions. We use this property by adding a uniform distribution to the Gaussian mixture for modeling the outliers. The proposed genetic algorithm can efficiently estimate the parameters of this extended mixture for various initial settings. Also, by changing the minimization criterion, estimates of the parameters can be obtained by histogram fitting which considerably reduces the computational cost. Experiments on synthetic and real MR data show that accurate estimates of the gray and white matters parameters are computed.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Apr
pubmed:issn
0278-0062
pubmed:author
pubmed:issnType
Print
pubmed:volume
17
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
172-86
pubmed:dateRevised
2004-11-17
pubmed:meshHeading
pubmed-meshheading:9688150-Adolescent, pubmed-meshheading:9688150-Adult, pubmed-meshheading:9688150-Aged, pubmed-meshheading:9688150-Algorithms, pubmed-meshheading:9688150-Artifacts, pubmed-meshheading:9688150-Bias (Epidemiology), pubmed-meshheading:9688150-Brain, pubmed-meshheading:9688150-Computer Simulation, pubmed-meshheading:9688150-Female, pubmed-meshheading:9688150-Humans, pubmed-meshheading:9688150-Image Enhancement, pubmed-meshheading:9688150-Image Processing, Computer-Assisted, pubmed-meshheading:9688150-Likelihood Functions, pubmed-meshheading:9688150-Magnetic Resonance Imaging, pubmed-meshheading:9688150-Male, pubmed-meshheading:9688150-Middle Aged, pubmed-meshheading:9688150-Models, Statistical, pubmed-meshheading:9688150-Monte Carlo Method, pubmed-meshheading:9688150-Normal Distribution, pubmed-meshheading:9688150-Stochastic Processes
pubmed:year
1998
pubmed:articleTitle
Robust parameter estimation of intensity distributions for brain magnetic resonance images.
pubmed:affiliation
Signal Processing Laboratory, Swiss Federal Institute of Technology, Lausanne. philippe.schroeter@swisscom.com
pubmed:publicationType
Journal Article