Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:9617907rdf:typepubmed:Citationlld:pubmed
pubmed-article:9617907lifeskim:mentionsumls-concept:C0041618lld:lifeskim
pubmed-article:9617907lifeskim:mentionsumls-concept:C0743559lld:lifeskim
pubmed-article:9617907pubmed:issue1lld:pubmed
pubmed-article:9617907pubmed:dateCreated1998-8-3lld:pubmed
pubmed-article:9617907pubmed:abstractTextMaximum likelihood (ML) methods are widely used in acoustic parameter estimation. Although ML methods are often unbiased, the variance is unacceptably large for many applications, including medical imaging. For such cases, Bayesian estimators can reduce variance and preserve contrast at the cost of an increased bias. Consequently, including prior knowledge about object and noise properties in the estimator can improve low-contrast target detectability of parametric ultrasound images by improving the precision of the estimates. In this paper, errors introduced by biased estimators are analyzed and approximate closed-form expressions are developed. The task-specific nature of the estimator performance is demonstrated through analysis, simulation, and experimentation. A strategy for selecting object priors is proposed. Acoustic scattering from kidney tissue is the emphasis of this paper, although the results are more generally applicable.lld:pubmed
pubmed-article:9617907pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:9617907pubmed:languageenglld:pubmed
pubmed-article:9617907pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:9617907pubmed:citationSubsetIMlld:pubmed
pubmed-article:9617907pubmed:statusMEDLINElld:pubmed
pubmed-article:9617907pubmed:monthFeblld:pubmed
pubmed-article:9617907pubmed:issn0278-0062lld:pubmed
pubmed-article:9617907pubmed:authorpubmed-author:ChaturvediPPlld:pubmed
pubmed-article:9617907pubmed:authorpubmed-author:InsanaM FMFlld:pubmed
pubmed-article:9617907pubmed:issnTypePrintlld:pubmed
pubmed-article:9617907pubmed:volume17lld:pubmed
pubmed-article:9617907pubmed:ownerNLMlld:pubmed
pubmed-article:9617907pubmed:authorsCompleteYlld:pubmed
pubmed-article:9617907pubmed:pagination53-61lld:pubmed
pubmed-article:9617907pubmed:dateRevised2007-11-14lld:pubmed
pubmed-article:9617907pubmed:meshHeadingpubmed-meshheading:9617907-...lld:pubmed
pubmed-article:9617907pubmed:meshHeadingpubmed-meshheading:9617907-...lld:pubmed
pubmed-article:9617907pubmed:meshHeadingpubmed-meshheading:9617907-...lld:pubmed
pubmed-article:9617907pubmed:meshHeadingpubmed-meshheading:9617907-...lld:pubmed
pubmed-article:9617907pubmed:meshHeadingpubmed-meshheading:9617907-...lld:pubmed
pubmed-article:9617907pubmed:meshHeadingpubmed-meshheading:9617907-...lld:pubmed
pubmed-article:9617907pubmed:year1998lld:pubmed
pubmed-article:9617907pubmed:articleTitleErrors in biased estimators for parametric ultrasonic imaging.lld:pubmed
pubmed-article:9617907pubmed:affiliationDepartment of Radiology, University of Kansas Medical Center, Kansas City 66160-7234, USA. pawan@research.kumc.edulld:pubmed
pubmed-article:9617907pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:9617907pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:9617907pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed