Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
5
pubmed:dateCreated
1998-1-30
pubmed:abstractText
Saccharomyces cerevisiae, the exemplar unicellular eukaryote, can only survive and proliferate in its natural habitats through constant adaptation within the constraints of a dynamic ecosystem. In every cell cycle of S. cerevisiae, there is a short period in the G1 phase of the cell cycle where "sensing" transpires; if a sufficient amount of fermentable sugars is available, the cells will initiate another round of vegetative cell division. When fermentable sugars become limiting, the yeast can execute the diauxic shift, where it reprograms its metabolism to utilize nonfermentable carbon sources. S. cerevisiae can also initiate the developmental program of pseudohyphal formation and invasive growth response, when essential nutrients become limiting. S. cerevisiae shares this growth form-switching ability with important pathogens such as the human pathogen, Candida albicans, and the corn smut pathogen Ustilago maydis. The pseudohyphal growth response of S. cerevisiae has mainly been implicated as a means for the yeast to search for nutrients. An important observation made was that starch-degrading S. cerevisiae strains have the added ability to form pseudohyphae and grow invasively into a starch-containing medium. More significantly, it was also shown that the STA1-3 genes encoding three glucoamylase isozymes responsible for starch hydrolysis in S. cerevisiae are coregulated with a gene, MUC1, essential for pseudohyphal and invasive growth. At least two putative transcriptional activators, Mss10p and Mss11p, are involved in this regulation. The Muc1p is a putative integral membrane-bound protein similar to mammalian mucin-like proteins that have been implicated in the ability of cancer cells to invade other tissues. This provided us with an excellent example of integrative control between nutrient sensing, signaling, and differential development.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
http://linkedlifedata.com/resource/pubmed/chemical/Carbon, http://linkedlifedata.com/resource/pubmed/chemical/Cyclic AMP, http://linkedlifedata.com/resource/pubmed/chemical/DNA-Binding Proteins, http://linkedlifedata.com/resource/pubmed/chemical/EGLN1 protein, human, http://linkedlifedata.com/resource/pubmed/chemical/Fungal Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Glucan 1,4-alpha-Glucosidase, http://linkedlifedata.com/resource/pubmed/chemical/Immediate-Early Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Isoenzymes, http://linkedlifedata.com/resource/pubmed/chemical/MSN1 protein, S cerevisiae, http://linkedlifedata.com/resource/pubmed/chemical/MSS11 protein, S cerevisiae, http://linkedlifedata.com/resource/pubmed/chemical/Membrane Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Monosaccharide Transport Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Mucin-1, http://linkedlifedata.com/resource/pubmed/chemical/Procollagen-Proline Dioxygenase, http://linkedlifedata.com/resource/pubmed/chemical/Protein-Serine-Threonine Kinases, http://linkedlifedata.com/resource/pubmed/chemical/SNF1-related protein kinases, http://linkedlifedata.com/resource/pubmed/chemical/SNF3 protein, S cerevisiae, http://linkedlifedata.com/resource/pubmed/chemical/Saccharomyces cerevisiae Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Starch, http://linkedlifedata.com/resource/pubmed/chemical/Transcription Factors, http://linkedlifedata.com/resource/pubmed/chemical/ras Proteins
pubmed:status
MEDLINE
pubmed:issn
1040-9238
pubmed:author
pubmed:issnType
Print
pubmed:volume
32
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
405-35
pubmed:dateRevised
2009-11-19
pubmed:meshHeading
pubmed-meshheading:9383611-Adaptation, Physiological, pubmed-meshheading:9383611-Carbon, pubmed-meshheading:9383611-Cell Division, pubmed-meshheading:9383611-Chromosomes, Fungal, pubmed-meshheading:9383611-Cyclic AMP, pubmed-meshheading:9383611-DNA-Binding Proteins, pubmed-meshheading:9383611-Fermentation, pubmed-meshheading:9383611-Fungal Proteins, pubmed-meshheading:9383611-G1 Phase, pubmed-meshheading:9383611-Gene Expression Regulation, Fungal, pubmed-meshheading:9383611-Genes, Fungal, pubmed-meshheading:9383611-Glucan 1,4-alpha-Glucosidase, pubmed-meshheading:9383611-Immediate-Early Proteins, pubmed-meshheading:9383611-Isoenzymes, pubmed-meshheading:9383611-Membrane Proteins, pubmed-meshheading:9383611-Models, Biological, pubmed-meshheading:9383611-Monosaccharide Transport Proteins, pubmed-meshheading:9383611-Mucin-1, pubmed-meshheading:9383611-Procollagen-Proline Dioxygenase, pubmed-meshheading:9383611-Protein-Serine-Threonine Kinases, pubmed-meshheading:9383611-Saccharomyces cerevisiae, pubmed-meshheading:9383611-Saccharomyces cerevisiae Proteins, pubmed-meshheading:9383611-Signal Transduction, pubmed-meshheading:9383611-Starch, pubmed-meshheading:9383611-Transcription Factors, pubmed-meshheading:9383611-ras Proteins
pubmed:year
1997
pubmed:articleTitle
Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae.
pubmed:affiliation
Institute for Wine Biotechnology, University of Stellenbosch, South Africa.
pubmed:publicationType
Journal Article, Review, Research Support, Non-U.S. Gov't