Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:dateCreated |
1997-1-30
|
pubmed:abstractText |
We present a methodology for predicting the metabolic pathways of an organism from its genomic sequence by reference to a knowledge base of known metabolic pathways. We applied these techniques to the genome of H. influenzae by reference to the EcoCyc knowledge base to predict which of 81 metabolic pathways of E. coli are found in H. influenzae. The resulting prediction is a complex hypothesis that is presented in computer form as HinCyc: an electronic encyclopedia of the genes and metabolic pathways of H. influenzae. HinCyc connects the predicted genes, enzymes, enzyme-catalyzed reactions, and biochemical pathways in a WWW-accessible knowledge base to allow scientists to explore this complex hypothesis.
|
pubmed:grant | |
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:issn |
1553-0833
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
4
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
116-24
|
pubmed:dateRevised |
2007-11-14
|
pubmed:meshHeading |
pubmed-meshheading:8877511-Computer Communication Networks,
pubmed-meshheading:8877511-Escherichia coli,
pubmed-meshheading:8877511-Genome, Bacterial,
pubmed-meshheading:8877511-Genome, Viral,
pubmed-meshheading:8877511-Haemophilus influenzae,
pubmed-meshheading:8877511-Models, Biological,
pubmed-meshheading:8877511-Software
|
pubmed:year |
1996
|
pubmed:articleTitle |
HinCyc: a knowledge base of the complete genome and metabolic pathways of H. influenzae.
|
pubmed:affiliation |
Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA. pkarp@ai.sri.com
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, P.H.S.,
Research Support, Non-U.S. Gov't
|