Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
30
pubmed:dateCreated
1996-9-3
pubmed:abstractText
Apx, the amphibian protein associated with renal amiloride-sensitive Na+ channel activity and with properties consistent with the pore-forming 150-kDa subunit of an epithelial Na+ channel complex initially purified by Benos et al. (Benos, D. J., Saccomani, G., and Sariban-Sohraby, S.(1987) J. Biol. Chem. 262, 10613-10618), has previously failed to generate amiloride-sensitive Na+ currents (Staub, O., Verrey, F., Kleyman, T. R., Benos, D. J., Rossier, B. C., and Kraehenbuhl, J.-P.(1992) J. Cell Biol. 119, 1497-1506). Renal epithelial Na+ channel activity is tonically inhibited by endogenous actin filaments (Cantiello, H. F., Stow, J., Prat, A. G., and Ausiello, D. A.(1991) Am. J. Physiol. 261, C882-C888). Thus, Apx was expressed and its function examined in human melanoma cells with a defective actin-based cytoskeleton. Apx-transfection was associated with a 60-900% increase in amiloride-sensitive (Ki = 3 microM) Na+ currents. Single channel Na+ currents had a similar functional fingerprint to the vasopressin-sensitive, and actin-regulated epithelial Na+ channel of A6 cells, including a 6-7 pS single channel conductance and a perm-selectivity of Na+:K+ of 4:1. Na+ channel activity was either spontaneous, or induced by addition of actin or protein kinase A plus ATP to the bathing solution of excised inside-out patches. Therefore, Apx may be responsible for the ionic conductance involved in the vasopressin-activated Na+ reabsorption in the amphibian kidney.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
0021-9258
pubmed:author
pubmed:issnType
Print
pubmed:day
26
pubmed:volume
271
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
18045-53
pubmed:dateRevised
2006-11-15
pubmed:meshHeading
pubmed-meshheading:8663566-Actins, pubmed-meshheading:8663566-Amiloride, pubmed-meshheading:8663566-Amino Acid Sequence, pubmed-meshheading:8663566-Animals, pubmed-meshheading:8663566-Binding Sites, pubmed-meshheading:8663566-Biological Transport, pubmed-meshheading:8663566-Cytoskeleton, pubmed-meshheading:8663566-Dose-Response Relationship, Drug, pubmed-meshheading:8663566-Electric Conductivity, pubmed-meshheading:8663566-Epithelium, pubmed-meshheading:8663566-Humans, pubmed-meshheading:8663566-Kidney, pubmed-meshheading:8663566-Melanoma, pubmed-meshheading:8663566-Molecular Sequence Data, pubmed-meshheading:8663566-Protein Binding, pubmed-meshheading:8663566-Recombinant Proteins, pubmed-meshheading:8663566-Sodium Channels, pubmed-meshheading:8663566-Tumor Cells, Cultured, pubmed-meshheading:8663566-Xenopus Proteins, pubmed-meshheading:8663566-Xenopus laevis
pubmed:year
1996
pubmed:articleTitle
Renal epithelial protein (Apx) is an actin cytoskeleton-regulated Na+ channel.
pubmed:affiliation
Renal Unit, Massachusetts General Hospital East, Charlestown, Massachusetts 02129, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, P.H.S.