rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
13
|
pubmed:dateCreated |
1993-8-6
|
pubmed:abstractText |
The human epsilon-globin gene undergoes dramatic changes in transcriptional activity during development, but the molecular factors that control its high expression in the embryo and its complete repression at 6-8 weeks of gestation are unknown. Although a putative silencer has been identified, the action of this silencer appears to be necessary but not sufficient for complete repression of epsilon gene expression, suggesting that multiple control elements may be required. Phylogenetic footprinting is a strategy that uses evolution to aid in the elucidation of these multiple control points. The strategy is based on the observation that the characteristic developmental expression pattern of the epsilon gene is conserved in all placental mammals. By aligning epsilon genomic sequences (from -2.0 kb upstream to the epsilon polyadenylylation signal), conserved sequence elements that are likely binding sites for trans factors can be identified against the background of neutral DNA. Twenty-one such conserved elements (phylogenetic footprints) were found upstream of the epsilon gene. Oligonucleotides spanning these conserved elements were used in a gel-shift assay to reveal 47 nuclear binding sites. Among these were 8 binding sites for YY1 (yin and yang 1), a protein with dual (activator or repressor) activity; 5 binding sites for the putative stage selector protein, SSP; and 7 binding sites for an as yet unidentified protein. The large number of high-affinity interactions detected in this analysis further supports the notion that the epsilon gene is regulated by multiple redundant elements.
|
pubmed:grant |
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1301735,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1309593,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1406669,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1639067,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1655281,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1737096,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1899910,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1912570,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1946404,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1946405,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-1987478,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-2017165,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-2026603,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-2216720,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-2251502,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-2467208,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-2468996,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-2748586,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-3199442,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8327477-6527390
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
http://linkedlifedata.com/resource/pubmed/chemical/Basic Helix-Loop-Helix Leucine...,
http://linkedlifedata.com/resource/pubmed/chemical/CBF1 protein, S cerevisiae,
http://linkedlifedata.com/resource/pubmed/chemical/DNA-Binding Proteins,
http://linkedlifedata.com/resource/pubmed/chemical/Erythroid-Specific DNA-Binding...,
http://linkedlifedata.com/resource/pubmed/chemical/Fungal Proteins,
http://linkedlifedata.com/resource/pubmed/chemical/Globins,
http://linkedlifedata.com/resource/pubmed/chemical/Saccharomyces cerevisiae Proteins,
http://linkedlifedata.com/resource/pubmed/chemical/Transcription Factors,
http://linkedlifedata.com/resource/pubmed/chemical/YY1 Transcription Factor,
http://linkedlifedata.com/resource/pubmed/chemical/YY1 protein, human
|
pubmed:status |
MEDLINE
|
pubmed:month |
Jul
|
pubmed:issn |
0027-8424
|
pubmed:author |
|
pubmed:issnType |
Print
|
pubmed:day |
1
|
pubmed:volume |
90
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
6018-22
|
pubmed:dateRevised |
2009-11-18
|
pubmed:meshHeading |
pubmed-meshheading:8327477-Animals,
pubmed-meshheading:8327477-Base Sequence,
pubmed-meshheading:8327477-Basic Helix-Loop-Helix Leucine Zipper Transcription Factors,
pubmed-meshheading:8327477-Binding Sites,
pubmed-meshheading:8327477-DNA-Binding Proteins,
pubmed-meshheading:8327477-Erythroid-Specific DNA-Binding Factors,
pubmed-meshheading:8327477-Fungal Proteins,
pubmed-meshheading:8327477-Globins,
pubmed-meshheading:8327477-Humans,
pubmed-meshheading:8327477-Molecular Sequence Data,
pubmed-meshheading:8327477-Phylogeny,
pubmed-meshheading:8327477-Saccharomyces cerevisiae Proteins,
pubmed-meshheading:8327477-Transcription Factors,
pubmed-meshheading:8327477-YY1 Transcription Factor
|
pubmed:year |
1993
|
pubmed:articleTitle |
Phylogenetic footprinting reveals unexpected complexity in trans factor binding upstream from the epsilon-globin gene.
|
pubmed:affiliation |
Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616.
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, P.H.S.,
Research Support, Non-U.S. Gov't
|