Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:8220688rdf:typepubmed:Citationlld:pubmed
pubmed-article:8220688lifeskim:mentionsumls-concept:C0018563lld:lifeskim
pubmed-article:8220688lifeskim:mentionsumls-concept:C0441635lld:lifeskim
pubmed-article:8220688lifeskim:mentionsumls-concept:C1306645lld:lifeskim
pubmed-article:8220688lifeskim:mentionsumls-concept:C0679201lld:lifeskim
pubmed-article:8220688lifeskim:mentionsumls-concept:C1441526lld:lifeskim
pubmed-article:8220688lifeskim:mentionsumls-concept:C1880157lld:lifeskim
pubmed-article:8220688pubmed:issue4lld:pubmed
pubmed-article:8220688pubmed:dateCreated1993-12-9lld:pubmed
pubmed-article:8220688pubmed:abstractTextWe present a method for medical image understanding by computer that uses model-based, hierarchical Bayesian inference to accurately segment imaged anatomy. A first application is a prototype system that automatically segments and measures symptoms of arthridities in hand radiographs. This is potentially useful in radiological diagnosis and tracking of arthridities. Key steps of the model-based, Bayesian inference approach are: (1) prediction of imagery features from 3D models of anatomy, parameterized by population statistics, (2) local image feature extraction in predicted sub-regions, and (3) the use of a probabilistic calculus to accrue results of image processing and image feature matching procedures in support or denial of hypotheses about the imaged anatomy. The prototype system for hand radiograph analysis accurately segments normal and somewhat degenerated hand anatomy. Results are shown of the ability of the automated system to 'fail soft', recognizing when segmentation is inadequate for accurate measurement. This self evaluation capability improves reliability of measurements for potential clinical use.lld:pubmed
pubmed-article:8220688pubmed:languageenglld:pubmed
pubmed-article:8220688pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:8220688pubmed:citationSubsetIMlld:pubmed
pubmed-article:8220688pubmed:statusMEDLINElld:pubmed
pubmed-article:8220688pubmed:monthAuglld:pubmed
pubmed-article:8220688pubmed:issn0933-3657lld:pubmed
pubmed-article:8220688pubmed:authorpubmed-author:JohnstonS ESElld:pubmed
pubmed-article:8220688pubmed:authorpubmed-author:DyeJ WJWlld:pubmed
pubmed-article:8220688pubmed:authorpubmed-author:LevittT STSlld:pubmed
pubmed-article:8220688pubmed:authorpubmed-author:HedgcockM...lld:pubmed
pubmed-article:8220688pubmed:authorpubmed-author:ShadleV MVMlld:pubmed
pubmed-article:8220688pubmed:authorpubmed-author:VoskyDDlld:pubmed
pubmed-article:8220688pubmed:issnTypePrintlld:pubmed
pubmed-article:8220688pubmed:volume5lld:pubmed
pubmed-article:8220688pubmed:ownerNLMlld:pubmed
pubmed-article:8220688pubmed:authorsCompleteYlld:pubmed
pubmed-article:8220688pubmed:pagination365-87lld:pubmed
pubmed-article:8220688pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:8220688pubmed:meshHeadingpubmed-meshheading:8220688-...lld:pubmed
pubmed-article:8220688pubmed:meshHeadingpubmed-meshheading:8220688-...lld:pubmed
pubmed-article:8220688pubmed:meshHeadingpubmed-meshheading:8220688-...lld:pubmed
pubmed-article:8220688pubmed:meshHeadingpubmed-meshheading:8220688-...lld:pubmed
pubmed-article:8220688pubmed:meshHeadingpubmed-meshheading:8220688-...lld:pubmed
pubmed-article:8220688pubmed:meshHeadingpubmed-meshheading:8220688-...lld:pubmed
pubmed-article:8220688pubmed:meshHeadingpubmed-meshheading:8220688-...lld:pubmed
pubmed-article:8220688pubmed:year1993lld:pubmed
pubmed-article:8220688pubmed:articleTitleBayesian inference for model-based segmentation of computed radiographs of the hand.lld:pubmed
pubmed-article:8220688pubmed:affiliationNational Center for Computed Imaging, San Francisco VA Medical Center, CA 94121-1598.lld:pubmed
pubmed-article:8220688pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:8220688pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:8220688pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed