rdf:type |
|
lifeskim:mentions |
umls-concept:C0001897,
umls-concept:C0337037,
umls-concept:C0872220,
umls-concept:C1145667,
umls-concept:C1167622,
umls-concept:C1280500,
umls-concept:C1708533,
umls-concept:C2349209,
umls-concept:C2603343,
umls-concept:C2698172,
umls-concept:C2825311
|
pubmed:issue |
2
|
pubmed:dateCreated |
1993-12-3
|
pubmed:abstractText |
A systematic molecular mechanics study of the alamethicin molecule was made to determine a set of low-energy conformers in vacuo and in aqueous environment. The behavior of these conformers was investigated at the phase boundary which was modeled as a plane dividing two compartments with solvation properties of water and octanol with a constant electric field applied normal to the boundary. The calculations were performed with a molecular mechanics program for calculation of stable conformations at the phase boundary utilizing the Empiric Conformational Energy Program for Peptides force field and the Hopfinger-Scheraga solvation model. 371 minimum energy conformers of alamethicin, determined in vacuo with the build-up procedure, were used as starting conformations for energy minimization in aqueous environment and at the phase boundary. Only 49 interphase-bound structures were within 12 kcal/mol of the minima which was found. No helical structures having values close to the canonical parameters for an alpha- or 3(10)-helix were found despite the presence of eight alpha-methylalanine residues which favor the formation of these helices; four helix-like structures were found, having all negative phi, psi values. All the helical conformers have very high energies in water (approximately 14 kcal/mol), but are quite stable at the phase boundary (3.7-6.8 kcal/mol above the lowest minima found). The implications of these results for proposed mechanisms for membrane-binding and voltage-dependent gating are considered.
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1271397,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1304905,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1358848,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1510951,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1546294,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1547331,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1606136,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1657234,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1692484,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1715999,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1717015,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1717016,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1725513,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1911756,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-19431805,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-1998672,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2207288,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2271639,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2271640,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2361154,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2416558,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2418870,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2432879,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2436657,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2554981,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2660821,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-2753150,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-3179296,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-3227017,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-3427183,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-3472198,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-3663608,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-3756150,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-3890885,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-6292726,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-6324906,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-6615794,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-7093416,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8218891-7115881
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
|
pubmed:status |
MEDLINE
|
pubmed:month |
Aug
|
pubmed:issn |
0006-3495
|
pubmed:author |
|
pubmed:issnType |
Print
|
pubmed:volume |
65
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
608-17
|
pubmed:dateRevised |
2010-9-13
|
pubmed:meshHeading |
pubmed-meshheading:8218891-Alamethicin,
pubmed-meshheading:8218891-Binding Sites,
pubmed-meshheading:8218891-Electrochemistry,
pubmed-meshheading:8218891-Lipids,
pubmed-meshheading:8218891-Mathematics,
pubmed-meshheading:8218891-Membrane Potentials,
pubmed-meshheading:8218891-Models, Theoretical,
pubmed-meshheading:8218891-Protein Conformation,
pubmed-meshheading:8218891-Protein Structure, Secondary,
pubmed-meshheading:8218891-Water
|
pubmed:year |
1993
|
pubmed:articleTitle |
Effects of electric field on alamethicin bound at the lipid-water interface: a molecular mechanics study.
|
pubmed:affiliation |
Center for Molecular Design Washington University, St. Louis, MO 63130.
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, Non-P.H.S.
|