rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
16
|
pubmed:dateCreated |
1994-9-2
|
pubmed:abstractText |
Genes for immunoglobulins and T-cell receptor are generated by a process known as V(D)J recombination. This process is highly regulated and mediated by the recombination activating proteins RAG-1 and RAG-2. By the use of the two-hybrid protein interaction system, we isolated a human protein that specifically interacts with RAG-1. This protein is the human homologue of the yeast SRP1 (suppressor of a temperature-sensitive RNA polymerase I mutation). The SRP1-1 mutation is an allele-specific dominant suppressor of a temperature-sensitive mutation in the zinc binding domain of the 190-kDa subunit of Saccharomyces cerevisiae RNA polymerase I. The human SRP cDNA clone was used to screen a mouse cDNA library. We obtained a 3.9-kbp cDNA clone encoding the mouse SRP1. The open reading frame of this cDNA encodes a 538-amino acid protein with eight degenerate repeats of 40-45 amino acids each. The mouse and human SRP1 are 98% identical, while the mouse and yeast SRP1 have 48% identity. After cotransfection of the genes encoding RAG-1 and human SRP1 into 293T cells, a stable complex was evident. Deletion analysis indicated that the region of the SRP1 protein interacting with RAG-1 involved four repeats. The domain of RAG-1 that associates with SRP1 mapped N-terminal to the zinc finger domain. Because this region of RAG-1 is not required for recombination and SRP1 appears to be bound to the nuclear envelope, we suggest that this interaction helps to localize RAG-1.
|
pubmed:grant |
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-1448093,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-1510813,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-1547487,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-1547488,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-1698283,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-1910681,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-2360047,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-2598259,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-2707602,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-2777075,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-3120312,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-3349523,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-3495343,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-6300689,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-7690960,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-7907279,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-7926767,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-8016130,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-8097433,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-8259518,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-8259519,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-8284210,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-8327489,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-8425219,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-8458323,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-8469973,
http://linkedlifedata.com/resource/pubmed/commentcorrection/8052633-8497262
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
|
pubmed:status |
MEDLINE
|
pubmed:month |
Aug
|
pubmed:issn |
0027-8424
|
pubmed:author |
|
pubmed:issnType |
Print
|
pubmed:day |
2
|
pubmed:volume |
91
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
7633-7
|
pubmed:dateRevised |
2009-11-18
|
pubmed:meshHeading |
pubmed-meshheading:8052633-Amino Acid Sequence,
pubmed-meshheading:8052633-Animals,
pubmed-meshheading:8052633-DNA Mutational Analysis,
pubmed-meshheading:8052633-Gene Rearrangement, T-Lymphocyte,
pubmed-meshheading:8052633-Homeodomain Proteins,
pubmed-meshheading:8052633-Humans,
pubmed-meshheading:8052633-Mice,
pubmed-meshheading:8052633-Molecular Sequence Data,
pubmed-meshheading:8052633-Nuclear Proteins,
pubmed-meshheading:8052633-Protein Binding,
pubmed-meshheading:8052633-Proteins,
pubmed-meshheading:8052633-Receptors, Antigen, T-Cell,
pubmed-meshheading:8052633-Recombination, Genetic,
pubmed-meshheading:8052633-Repetitive Sequences, Nucleic Acid,
pubmed-meshheading:8052633-Saccharomyces cerevisiae,
pubmed-meshheading:8052633-Sequence Homology, Amino Acid,
pubmed-meshheading:8052633-Structure-Activity Relationship,
pubmed-meshheading:8052633-alpha Karyopherins
|
pubmed:year |
1994
|
pubmed:articleTitle |
RAG-1 interacts with the repeated amino acid motif of the human homologue of the yeast protein SRP1.
|
pubmed:affiliation |
Rockefeller University, New York, NY 10021.
|
pubmed:publicationType |
Journal Article,
Comparative Study,
Research Support, U.S. Gov't, P.H.S.,
Research Support, Non-U.S. Gov't
|