Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:7828890rdf:typepubmed:Citationlld:pubmed
pubmed-article:7828890lifeskim:mentionsumls-concept:C0086418lld:lifeskim
pubmed-article:7828890lifeskim:mentionsumls-concept:C0006104lld:lifeskim
pubmed-article:7828890lifeskim:mentionsumls-concept:C0009015lld:lifeskim
pubmed-article:7828890lifeskim:mentionsumls-concept:C0006556lld:lifeskim
pubmed-article:7828890lifeskim:mentionsumls-concept:C0120465lld:lifeskim
pubmed-article:7828890lifeskim:mentionsumls-concept:C0542341lld:lifeskim
pubmed-article:7828890lifeskim:mentionsumls-concept:C0679058lld:lifeskim
pubmed-article:7828890lifeskim:mentionsumls-concept:C0851285lld:lifeskim
pubmed-article:7828890lifeskim:mentionsumls-concept:C0936012lld:lifeskim
pubmed-article:7828890lifeskim:mentionsumls-concept:C1547699lld:lifeskim
pubmed-article:7828890lifeskim:mentionsumls-concept:C2700640lld:lifeskim
pubmed-article:7828890pubmed:issue1-2lld:pubmed
pubmed-article:7828890pubmed:dateCreated1995-2-22lld:pubmed
pubmed-article:7828890pubmed:abstractTextRas proteins bound to GDP are biologically inactive while those bound to GTP are active. Ras-specific guanine nucleotide-exchange factors (GEFs) have been shown to activate Ras proteins. We used oligodeoxyribonucleotide primers with sequences similar to the cDNAs of rat and mouse cdc25 (encoding a Ras-GEF) to amplify, by the PCR, sequences with the potential to encode a 1275-amino-acid protein homologous to the rodent Cdc25GEF proteins. Northern blot analysis detected a brain-specific 5-kb transcript. We provide evidence for a novel alternately spliced transcript of cdc25 and show that these alternately spliced transcripts are differentially expressed in various regions of the adult nervous system. Antibodies raised against the C terminus of the protein recognize a 140-kDa protein in brain extracts of human, rat, guinea pig and cow; the 140-kDa protein is associated predominantly, if not exclusively, with a crude membrane fraction of brain. The C terminus of human Cdc25GEF can complement the loss of CDC25 function in Saccharomyces cerevisiae. A glutathione S-transferase fusion protein containing the C terminus of the cdc25 product can stimulate guanine nucleotide exchange on H-Ras in vitro. Further, the Cdc25-fusion protein binds tightly to the nucleotide-free form of H-Ras in vitro, and this binding is reversed by the addition of GTP.lld:pubmed
pubmed-article:7828890pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7828890pubmed:languageenglld:pubmed
pubmed-article:7828890pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7828890pubmed:citationSubsetIMlld:pubmed
pubmed-article:7828890pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7828890pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7828890pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7828890pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7828890pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7828890pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7828890pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:7828890pubmed:statusMEDLINElld:pubmed
pubmed-article:7828890pubmed:monthDeclld:pubmed
pubmed-article:7828890pubmed:issn0378-1119lld:pubmed
pubmed-article:7828890pubmed:authorpubmed-author:DayHHlld:pubmed
pubmed-article:7828890pubmed:authorpubmed-author:WeiWWlld:pubmed
pubmed-article:7828890pubmed:authorpubmed-author:ParkWWlld:pubmed
pubmed-article:7828890pubmed:authorpubmed-author:BroekDDlld:pubmed
pubmed-article:7828890pubmed:issnTypePrintlld:pubmed
pubmed-article:7828890pubmed:day30lld:pubmed
pubmed-article:7828890pubmed:volume151lld:pubmed
pubmed-article:7828890pubmed:geneSymbolcdc25lld:pubmed
pubmed-article:7828890pubmed:geneSymbolcdc25<up>GEF</up>lld:pubmed
pubmed-article:7828890pubmed:ownerNLMlld:pubmed
pubmed-article:7828890pubmed:authorsCompleteYlld:pubmed
pubmed-article:7828890pubmed:pagination279-84lld:pubmed
pubmed-article:7828890pubmed:dateRevised2007-11-15lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:meshHeadingpubmed-meshheading:7828890-...lld:pubmed
pubmed-article:7828890pubmed:year1994lld:pubmed
pubmed-article:7828890pubmed:articleTitleCloning and analysis of human cDNAs encoding a 140-kDa brain guanine nucleotide-exchange factor, Cdc25GEF, which regulates the function of Ras.lld:pubmed
pubmed-article:7828890pubmed:affiliationDepartment of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles 90033.lld:pubmed
pubmed-article:7828890pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:7828890pubmed:publicationTypeResearch Support, U.S. Gov't, P.H.S.lld:pubmed
pubmed-article:7828890pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
entrez-gene:5923entrezgene:pubmedpubmed-article:7828890lld:entrezgene
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:7828890lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:7828890lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:7828890lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:7828890lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:7828890lld:pubmed