Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
4
pubmed:dateCreated
1995-9-21
pubmed:abstractText
In innervated adult skeletal muscles, the Golgi apparatus (GA) displays a set of remarkable features in comparison with embryonic myotubes. We have previously shown by immunocytochemical techniques, that in adult innervated fibers, the GA is no longer associated with all the nuclei, but appears to be concentrated mostly in the subneural domain under the nerve endings in chick (Jasmin, B. J., J. Cartaud, M. Bornens, and J.-P. Changeux. 1989. Proc. Natl. Acad. Sci. USA. 86:7218-7222) and rat (Jasmin, B. J., C. Antony, J.-P. Changeux, and J. Cartaud. 1995. Eur. J. Neurosci. 7:470-479). In addition to such compartmentalization, biochemical modifications take place that suggest a functional specialization of the subsynaptic GA. Here, we focused on the developmental regulation of the membrane traffic organization during the early steps of synaptogenesis in mouse diaphragm muscle. We investigated by immunofluorescence microscopy on cryosections, the distribution of selected subcompartments of the exocytic pathway, and also of a representative endocytic subcompartment with respect to the junctional or extrajunctional domains of developing myofibers. We show that throughout development the RER, the intermediate compartment, and the prelysosomal compartment (mannose 6-phosphate receptor-rich compartment) are homogeneously distributed along the fibers, irrespective of the subneural or extrajunctional domains. In contrast, at embryonic day E17, thus 2-3 d after the onset of innervation, most GA markers become restricted to the subneural domain. Interestingly, some Golgi markers (e.g., alpha-mannosidase II, TGN 38, present in the embryonic myotubes) are no longer detected in the innervated fiber even in the subsynaptic GA. These data show that in innervated muscle fibers, the distal part of the biosynthetic pathway, i.e., the GA, is remodeled selectively shortly after the onset of innervation. As a consequence, in the innervated fiber, the GA exists both as an evenly distributed organelle with basic functions, and as a highly differentiated subsynaptic organelle ensuring maturation and targeting of synaptic proteins. Finally, in the adult, denervation of a hemidiaphragm causes a burst of reexpression of all Golgi markers in extrasynaptic domains of the fibers, hence showing that the particular organization of the secretory pathway is placed under nerve control.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-1318730, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-1419041, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-1478971, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-1559843, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-1618127, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-1757461, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-1883810, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-1931052, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-1964414, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2105381, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2112230, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2178782, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2204342, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2320126, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2325774, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2355176, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2458355, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2674951, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2793937, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2921278, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2943218, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-2964276, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-3327863, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-3346730, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-3378703, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-3709535, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-375254, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-3839524, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-3839905, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-3894380, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-3911272, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-6572902, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-69707, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-7678420, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-7724666, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-7773444, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-7798312, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-7962068, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-8143716, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-8261100, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-8398140, http://linkedlifedata.com/resource/pubmed/commentcorrection/7642711-8428377
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Aug
pubmed:issn
0021-9525
pubmed:author
pubmed:issnType
Print
pubmed:volume
130
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
959-68
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed-meshheading:7642711-Animals, pubmed-meshheading:7642711-Biological Markers, pubmed-meshheading:7642711-Biological Transport, pubmed-meshheading:7642711-Cell Compartmentation, pubmed-meshheading:7642711-Cell Membrane, pubmed-meshheading:7642711-Denervation, pubmed-meshheading:7642711-Diaphragm, pubmed-meshheading:7642711-Endocytosis, pubmed-meshheading:7642711-Endoplasmic Reticulum, pubmed-meshheading:7642711-Gene Expression Regulation, Developmental, pubmed-meshheading:7642711-Golgi Apparatus, pubmed-meshheading:7642711-Immunohistochemistry, pubmed-meshheading:7642711-Intracellular Membranes, pubmed-meshheading:7642711-Membrane Proteins, pubmed-meshheading:7642711-Mice, pubmed-meshheading:7642711-Mice, Inbred C57BL, pubmed-meshheading:7642711-Microscopy, Fluorescence, pubmed-meshheading:7642711-Motor Endplate, pubmed-meshheading:7642711-Muscle Fibers, Skeletal, pubmed-meshheading:7642711-Organelles, pubmed-meshheading:7642711-Phrenic Nerve, pubmed-meshheading:7642711-Receptor, IGF Type 2
pubmed:year
1995
pubmed:articleTitle
Developmental regulation of membrane traffic organization during synaptogenesis in mouse diaphragm muscle.
pubmed:affiliation
Département de Biologie Supramoléculaire et Cellulaire, Institut Jacques-Monod, Paris, France.
More...