pubmed-article:3503545 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:3503545 | lifeskim:mentions | umls-concept:C1622418 | lld:lifeskim |
pubmed-article:3503545 | lifeskim:mentions | umls-concept:C0178523 | lld:lifeskim |
pubmed-article:3503545 | lifeskim:mentions | umls-concept:C0006674 | lld:lifeskim |
pubmed-article:3503545 | lifeskim:mentions | umls-concept:C0042866 | lld:lifeskim |
pubmed-article:3503545 | lifeskim:mentions | umls-concept:C0449438 | lld:lifeskim |
pubmed-article:3503545 | lifeskim:mentions | umls-concept:C0205263 | lld:lifeskim |
pubmed-article:3503545 | pubmed:issue | 4 | lld:pubmed |
pubmed-article:3503545 | pubmed:dateCreated | 1988-11-14 | lld:pubmed |
pubmed-article:3503545 | pubmed:abstractText | Purified chick duodenal brush border membrane vesicles (BBMV) were used to assess the effect of vitamin D on intestinal Ca2+ transport and membrane stability. BBMV preparations are right-side-out as judged by a nine-fold increase in accessibility of lactoperoxidase to core material actin in the presence of Triton X-100. Freshly prepared BBMV from vitamin D-deficient chicks support both sodium-dependent glucose transport and Ca2+ uptake. In vivo treatment with 1,25(OH)2D3 results in an 85% increase in the Vmax of Ca2+-uptake from 2.2 to 3.9 nmol/min/mg protein. The Km of Ca2+-uptake (0.9 mM) is independent of the vitamin D status of the chick. The majority of BBMV derived from vitamin D-replete chicks were destabilized and rendered incapable of supporting either sodium-dependent glucose uptake or Ca2+ uptake if they were held at 0-4 degrees C for 2 to 24 h. In 40 separate experiments, 80% of membranes derived from vitamin D-replete chicks showed characteristics of destabilization, whereas only 24% of all control membranes exhibited a lack of viability. | lld:pubmed |
pubmed-article:3503545 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3503545 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3503545 | pubmed:language | eng | lld:pubmed |
pubmed-article:3503545 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3503545 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:3503545 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3503545 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3503545 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3503545 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3503545 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3503545 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3503545 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:3503545 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:3503545 | pubmed:month | Aug | lld:pubmed |
pubmed-article:3503545 | pubmed:issn | 0884-0431 | lld:pubmed |
pubmed-article:3503545 | pubmed:author | pubmed-author:NormanA WAW | lld:pubmed |
pubmed-article:3503545 | pubmed:author | pubmed-author:PutkeyJ AJA | lld:pubmed |
pubmed-article:3503545 | pubmed:author | pubmed-author:NemereII | lld:pubmed |
pubmed-article:3503545 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:3503545 | pubmed:volume | 1 | lld:pubmed |
pubmed-article:3503545 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:3503545 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:3503545 | pubmed:pagination | 305-11 | lld:pubmed |
pubmed-article:3503545 | pubmed:dateRevised | 2007-11-14 | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:meshHeading | pubmed-meshheading:3503545-... | lld:pubmed |
pubmed-article:3503545 | pubmed:year | 1986 | lld:pubmed |
pubmed-article:3503545 | pubmed:articleTitle | Vitamin D status and brush border membrane vesicles: 1,25-dihydroxyvitamin D3 induced destabilization. | lld:pubmed |
pubmed-article:3503545 | pubmed:affiliation | Department of Biochemistry, University of California, Riverside 92521. | lld:pubmed |
pubmed-article:3503545 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:3503545 | pubmed:publicationType | In Vitro | lld:pubmed |
pubmed-article:3503545 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |