Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
7
|
pubmed:dateCreated |
1988-4-6
|
pubmed:abstractText |
Half-lives of Bacillus alpha-amylases at 90 degrees C and pH 6.5 greatly increase in the series from Bacillus amyloliquefaciens to Bacillus stearothermophilus to Bacillus licheniformis, e.g. the difference in thermostability between the first and the third enzymes exceeds 2 orders of magnitude. This stabilization is achieved by lowering the rate constant of monomolecular conformational scrambling, which is the cause of irreversible thermoinactivation of B. amyloliquefaciens and B. stearothermophilus alpha-amylases, so that for B. licheniformis alpha-amylase, another process, deamidation of Asn/Gln residues, emerges as the cause of inactivation. The extra thermostability of the thermophilic enzyme was found to be mainly due to additional salt bridges involving a few specific lysine residues (Lys-385 and Lys-88 and/or Lys-253). These stabilizing electrostatic interactions reduce the extent of unfolding of the enzyme molecule at high temperatures, consequently making it less prone to forming incorrect (scrambled) structures and thus decreasing the overall rate of irreversible thermoinactivation. The implications of these findings for protein engineering are discussed.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:chemical |
http://linkedlifedata.com/resource/pubmed/chemical/Amides,
http://linkedlifedata.com/resource/pubmed/chemical/Asparagine,
http://linkedlifedata.com/resource/pubmed/chemical/Glutamine,
http://linkedlifedata.com/resource/pubmed/chemical/Lysine,
http://linkedlifedata.com/resource/pubmed/chemical/Starch,
http://linkedlifedata.com/resource/pubmed/chemical/alpha-Amylases
|
pubmed:status |
MEDLINE
|
pubmed:month |
Mar
|
pubmed:issn |
0021-9258
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:day |
5
|
pubmed:volume |
263
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
3092-6
|
pubmed:dateRevised |
2009-11-19
|
pubmed:meshHeading |
pubmed-meshheading:3125174-Amides,
pubmed-meshheading:3125174-Asparagine,
pubmed-meshheading:3125174-Bacillus,
pubmed-meshheading:3125174-Electrochemistry,
pubmed-meshheading:3125174-Geobacillus stearothermophilus,
pubmed-meshheading:3125174-Glutamine,
pubmed-meshheading:3125174-Half-Life,
pubmed-meshheading:3125174-Hot Temperature,
pubmed-meshheading:3125174-Hydrogen-Ion Concentration,
pubmed-meshheading:3125174-Isoelectric Focusing,
pubmed-meshheading:3125174-Kinetics,
pubmed-meshheading:3125174-Lysine,
pubmed-meshheading:3125174-Protein Conformation,
pubmed-meshheading:3125174-Starch,
pubmed-meshheading:3125174-Thermodynamics,
pubmed-meshheading:3125174-alpha-Amylases
|
pubmed:year |
1988
|
pubmed:articleTitle |
Why is one Bacillus alpha-amylase more resistant against irreversible thermoinactivation than another?
|
pubmed:affiliation |
Department of Applied Biological Sciences, Massachusetts Institute of Technology, Cambridge 02139.
|
pubmed:publicationType |
Journal Article,
Comparative Study,
Research Support, U.S. Gov't, Non-P.H.S.
|